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We have studied the correlation between the broadening of the isothermal magnetic entropy

change and the Curie temperature (TC) distribution in nanostructured Pr2Fe17 and Nd2Fe17 alloys

produced by high-energy ball-milling after milling times of 10, 20, and 40 h. The changes in the

microstructure affect the Fe local environments and as a consequence the magnetic interactions,

giving rise to TC distributions centered around 285 K and 330 K for the Pr2Fe17 and Nd2Fe17 alloys,

respectively. The width of the distributions enlarges (up to 60 K) as the milling-time increases, and

consequently, the isothermal magnetic entropy change curves show an extended full width at half

maximum. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867346]

Magnetic refrigeration, the main application of the mag-

neto-caloric (MC) effect, is potentially called to replace con-

ventional vapor-cycle technology due to its higher energy

efficiency and because it avoids green-house effect and

depletion of ozone.1–3 Therefore, it is necessary to develop

materials with large MC effect in broad temperature intervals

around room temperature.

The MC materials usually exhibit useful working tem-

perature intervals of about 20 K,4 under magnetic field

changes of 2 T, but often a refrigeration system demands a

working temperature range that could reach 50 K or more.

Thus, the increase of the temperature range without reducing

their refrigerant capacity is a crucial aspect that MC materi-

als must fulfill if their utilization in magnetic refrigeration

technology is pursued. One of the material processing meth-

ods already used to enlarge the temperature range in which

the maximum isothermal magnetic entropy change takes

place is the mechanical milling of the MC material.5–7 In

fact, the nanocrystallization of ferromagnetic R2Fe17 com-

pounds (R¼Pr and Nd) by means of ball milling has been

proved as an illustrative example of this method, which leads

to the enhancement of the refrigerant temperature range and

the refrigerant capacity.8,9

Moreover, the Curie temperature (TC) is strongly affected

by the modification of the Fe–Fe interatomic distances in a

number of Fe-based alloys exhibiting magneto-volume anoma-

lies.10 Changes in the material microstructure can produce

local inhomogeneities around the Fe atoms, and a distribution

of Fe-Fe interatomic distances affecting the exchange interac-

tions. The latter would affect the value of the TC in the sense

that instead of a unique value for the TC a more reliable picture

is to consider also a distribution function for this magnitude in

the mechanically treated material. This distribution of TC val-

ues can induce a broadening of the magnetic entropy change

curves. In this paper, we report on the broadening of the iso-

thermal magnetic entropy change and the Curie temperature

distribution in ball-milled Pr2Fe17 and Nd2Fe17 compounds.

As-cast pellets and 10, 20, and 40 h ball-milled samples

were fabricated following the procedure described else-

where.11 Scanning (SEM) and transmission (TEM) electron

microscopy were used to study the microstructure and mor-

phology of the milled powders. Room temperature x-ray

powder diffraction patterns were collected in a high-

resolution x-ray powder diffractometer (Seifert model

XRD3000) using graphite-monochromated Cu Ka radiation

(k¼ 1.5418 Å). Room temperature neutron powder diffrac-

tion patterns were collected on the D1B two-axis neutron dif-

fractometer (ILL, Grenoble, France) using a neutron

wavelength of 2.52 Å. Le Bail analyses were performed

using the FullProf suite package.12

Magnetization vs. temperature curves under a constant

applied magnetic field of loH¼ 20 mT in the temperature range

250–400 K were obtained in a Faraday balance. Isothermal

M(loH) curves were measured in two magnetometers, a

Lakeshore VSM 7407 (85–420 K) and in a Quantum Design

PPMS (200–400 K). The isothermal magnetic entropy change,

DSM, was determined through the appropriate Maxwell relation.13

SEM images reveal that the Pr2Fe17 and Nd2Fe17 milled

powders are agglomerations of micronic grains (0.5–10lm)

with rounded borders and narrower size distribution as the

milling-time is increased.8,9 Higher magnification images

obtained by TEM show grains formed by crystallites of nano-

metric size; the histograms describing the crystallite size distri-

bution for the BM-10h and BM-20h compounds (powders

ball-milled for 10 and 20 h, respectively) follow log-normal

functions with average size of the crystallites below 25 nm

(see Table I). For the BM-40h samples, not enough crystallites
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appeared in the TEM images to obtain reliable statistical infor-

mation. The upper right inset in Fig. 1 shows a representative

TEM image of Nd2Fe17 BM-40h powders.

In Fig. 1, the room temperature neutron powder diffrac-

tion patterns corresponding to the Nd2Fe17 samples are

depicted. All the intensity peaks observed in the pattern of

the starting bulk alloy correspond to Bragg reflections

belonging to a Nd2Fe17 phase with the rhombohedral

Th2Zn17-type crystal structure; the estimated lattice parame-

ters (see Table I) agree with those previously reported.14 The

ball-milling process maintains the Th2Zn17-type crystal

structure with almost unchanged values of the cell parame-

ters, but alters the microstructure (see Table I). Details of the

followed procedure are described elsewhere.15

Figure 2 shows the magnetization as a function of the

temperature, M(T) curves. Those curves were composed with

the points corresponding to loH¼ 1 T of the isothermal

M(loH) measurements. Notice how the shape of the M(T)

curves changes as the milling-time increases: the ferro-to--

paramagnetic phase transition becomes poorly defined.

However, the position of the dM/dT vs. T curve minima (see

insets in Figure 2) remains almost unaltered (see Table I).

The latter can be attributed to the effect of a change in the

local environment of Fe atoms at the grain boundaries, which

modifies the magnetic interactions16 and, thus, the Curie

temperature of certain regions. Hence, we could picture the

nanostructured powders having a distribution of Fe-Fe

interatomic distances around the value for the Bulk alloys

giving rise to a distribution of Curie temperature values.8,9

Then, we describe the temperature dependence of the mag-

netization M(T) by a superposition of individual power-law

functions, according to17

M Tð Þ ¼ m0

ð
TC

TC � T

TC

� �b

h TC � Tð Þq TC; að ÞdTC: (1)

Here, m0 is a factor proportional to the saturation magnetiza-

tion, b is the temperature critical exponent of the magnetiza-

tion, h(x) is the Heavyside function (that ensures vanishing

magnetization values at T¼ TC), and q(TC, a) a

sample-specific TC distribution function with parameters set a.

For the present case, we have assumed a Gaussian distribution
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FIG. 1. Room temperature neutron powder diffraction patterns correspond-

ing to bulk, BM-10h, BM-20h, and BM-40h Nd2Fe17 alloys. Upper left
inset: Le Bail fit of the x-ray powder diffraction pattern collected for

BM-20h Pr2Fe17 sample. Upper right inset: TEM image of the BM-40h

Nd2Fe17 sample.

TABLE I. Structural and magnetic data (the crystallographic parameters were obtained from the x-ray and neutron powder diffraction patterns).

Pr2Fe17 Nd2Fe17

Bulk BM-10h BM-20h BM-40h Bulk BM-10h BM-20h BM-40h

a(Å) 8.584(1) 8.580(1) 8. 582(1) 8.583(1) 8.582(1) 8.580(1) 8.578(1) 8.578(1)

b(Å) 12.460(1) 12.455(1) 12. 458(1) 12.453(1) 12.459(1) 12.455(1) 12.453(1) 12.454(1)

sTEM (nm) … 23(1) 18(1) * … 17(3) 10(2) …

sDiff (nm) … 20(1) 17(1) 11(1) … 18(1) 15(1) 11(1)

�T C(K) 286(2) 290(5) 290(10) 290(10) 339(2) 340(10) 340(10) 340(10)

FIG. 2. Temperature dependence of the magnetization under an applied

magnetic field of 1 T for the bulk and BM samples, (a) Pr2Fe17 and

(b) Nd2Fe17. The two insets show the temperature derivatives of the

magnetization.
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being �TC and DTC the average value and width of the TC

distribution.

Although the value of TC is unique for any ferromag-

netic single-phase alloy and this value must be determined

under zero applied magnetic field, if the minimum of the

dM/dT vs. T curves is chosen as the value for the TC of the

material, such minimum of the dM/dT(T) curve exhibits a

broadening as the applied magnetic field is increased. The

inset in Fig. 3 shows the fit obtained for the temperature de-

pendence of the magnetization in bulk Nd2Fe17 alloy for

loH¼ 0.5 T following this approach. The TC distribution

width (see Figure 3) augments with milling-time for each

magnetic field. The magnetic field dependence of the width

follows a power law, DTC Hð Þ ¼ DT0
C þ cH1=g, with g related

with the critical exponents of the transition, as Berger et al.
have shown.17 The fit to a power law gives for Nd2Fe17:

gBulk¼ 1.9 6 0.2, gBM-10h¼ 3.0 6 0.3, gBM-20h¼ 2.4 6 0.2,

and gBM-40h¼ 2.8 6 0.3. The differences in these values indi-

cate variations in the magnetic interactions of the alloys and

how they are affected by the applied magnetic field.

Fig. 4 plots the temperature dependence of the magnetic

entropy change at loH¼ 1.5 T, for the studied samples. The

temperatures at which the curves reach their maximum are

similar for the four samples (�TC). However, for the milled

samples the maximum values of |DSM| diminish with the

milling-time because the drop of the magnetization is less pro-

nounced as milling-time increases.

In summary, ball-milled Pr2Fe17 and Nd2Fe17 alloys

maintain the Th2Zn17-type crystal structure but their crystal-

lite size is reduced below 25 nm. The local environment of

Fe atoms seems to be altered during the nanocrystallization

process, giving rise to a Curie temperature distribution

around the bulk’s value. Fitting the magnetization vs. tem-

perature curves with a Gaussian-type Curie temperature dis-

tribution, we found that the longer milling, the wider the TC

distribution, which correlates to the enlargement of the mag-

netic entropy change full width at half maximum.
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FIG. 3. Magnetic field dependence of the DTC for bulk and BM Nd2Fe17

samples. Inset: temperature dependence of the magnetization for the bulk

Nd2Fe17 alloy (see text for details).

FIG. 4. Temperature dependence of the magnetic entropy change under

loDH¼ 1.5 T for the bulk and BM Pr2Fe17 and Nd2Fe17 samples.
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