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Talbot’s self-imaging effect occurrs in near-field diffraction. In the rational
paraxial approximation, the Talbot images are formed at distances z = p/q,
where p and q are coprimes, and are superpositions of q equally spaced images
of the original binary transmission (Ronchi) grating. This interpretation offers
the possibility to express the Talbot effect through Gauss sums. Here, we pay
attention to the Talbot effect in the case of dispersion in optical fibers pre-
senting our considerations based on the close relationships of the mathematical
representations of diffraction and dispersion. Although dispersion deals with
continuous functions, such as gaussian and supergaussian pulses, whereas in
diffraction one frequently deals with discontinuous functions, the mathematical
correspondence enables one to characterize the Talbot effect in the two cases
with minor differences. In addition, we apply the wavelet transform to the frac-
tal Talbot effect in both diffraction and fiber dispersion. In the first case, the
self similar character of the transverse paraxial field at irrational multiples of
the Talbot distance is confirmed, whereas in the second case it is shown that the
field is not self similar for supergaussian pulses. Finally, a high-precision mea-
surement of irrational distances employing the fractal index determined with
the wavelet transform is pointed out.

1 Introduction

Near field diffraction can produce images of periodic structures such as gratings
without any other means. This is known since 1836 when this self-imaging
phenomenon has been discovered by H.F. Talbot, one of the inventor pioneers
of photography [1]. Take for example a periodic object as simple as a Ronchi
grating which is a set of black lines and equal clear spaces on a plate repeating
with period a. In monochromatic light of wavelength λ one can reproduce its
image at a “focal” distance known as the Talbot distance given by zT = a2λ−1,
a formula first derived by Lord Rayleigh in 1881 [2]. Moreover, more images
show up at integer multiples of the Talbot distance. It was only in 1989 that
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the first and only one review on the Talbot effect has been written by Patorski
[3].

In the framework of Helmholtz equation approach to the physical optics of
a δ-comb grating, Berry and Klein [4] showed in 1996 that in rational Talbot
planes, i.e., planes situated at rational distances in units of the Talbot distance,
the paraxial diffraction wavefield has a highly interesting arithmetic structure
related to Gauss sums and other fundamental relationships in number theory.
Moreover, they showed that at irrational distances a fractal structure of the
diffraction field can be proved with sufficient experimental evidence.

Here, after briefly reviewing the results of Berry & Klein, we show that anal-
ogous results can be obtained easily for the case of dispersion in linear optical
fibers. Moreover, we apply the wavelet transform [5] to the fractal Talbot prob-
lem. The point with the wavelet transform is that it contains more information
with respect to the Fourier transform, which is behind the Helmholtz equa-
tion. Wavelet transforms have been considered as a very suitable mathematical
microscope for fractals due to their ability to reveal the construction rules of
fractals and to resolve local scaling properties as noticed before for the case of
fractal aggregates [6].

2 Rational Talbot effect for Ronchi gratings

The diffraction due to Ronchi gratings can be approached analytically using the
Helmholtz equation. Passing to dimensionless transverse and paraxial variables
ξ = x/a and ζ = z/a, respectively, the scalar wave solution Ψ(ξ, ζ) of the
Helmholtz equation can be expressed as a convolution in ξ of the Ronchi unit
cell square function

g(ξ) =

{

1 ξ ∈ [− 1
4 ,

1
4 ]

0 ξ ∋ [− 1
4 ,

1
4 ] ,

(1)

and the Dirac comb transmittance, i.e.

Ψ(ξ, ζ) =

∫ +1/2

−1/2

g(ξ
′

)

(

∞
∑

n=−∞

exp[i 2πn(ξ − ξ
′

)] exp[iΘn(ζ)]

)

dξ
′

. (2)

In the previous formulas, the unit cell is the single spatial period of the grating,
which we take centered at the origin and of length equal to unity and Θn(ζ) =

2πζ a2

λ2

√

1−
(

nλ
a

)2
is a phase produced by the diffraction of the Dirac comb

‘diagonal’ rays. The so-called Fresnel approximation for this phase is a Taylor
expansion up to the second order for the square root leading to Θs(ζ) ≈ −πn2ζ.
It can be easily shown now that in the Fresnel approximation Eq. 2 can be
written as an infinite sum of phase exponentials in both variables ξ and ζ

Ψp(ξ, ζ) =
∞
∑

n=−∞

gn exp[i 2πnξ − iπn2ζ] =
∞
∑

n=−∞

gnψp(ξ, ζ) , (3)
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where the amplitudes gn are the Fourier modes of the transmittance function
of the Ronchi grating

gn =

∫ +1/4

−1/4

exp[−i 2πnξ′

]dξ
′

. (4)

Furthermore, by discretizing the optical propagation axis ζ by means of rational
numbers, one can write the rational paraxial field as a shifted delta comb affected
by phase factors, which is the main result of Berry and Klein:

ψp

(

ξ,
p

q

)

=
1

q1/2

∞
∑

n=−∞

Φdiffr(n; q, p) δ

(

ξp −
n

q

)

, (5)

where ξp = ξ − ep/2 and ep = 0(1) if p is even (odd). The factors Φdiffr(n; q, p)
are actually phase factors and will be specified in the next section. They appear
to be the physical quantities directly connected to number theory. At the same
time, this rational approximation allows for the following important physical
interpretation of the paraxial self-imaging process: in each unit cell of the plane

p/q, q images of the grating slits are reproduced with spacing a/q and intensity

reduced by 1/q.

3 Rational Talbot effect in linear optical fibers

As known, in fiber optics technology, electromagnetic dispersion is defined in
terms of the propagation constant (wavenumber) of each frequency mode β(ω) =
n(ω)ωc . In the following we will use one of the simplest optical fibers having
a core-cladding step profile of the index of refraction. In addition, the famous
slowly varying envelope approximation (henceforth SVEA) is a realistic ap-
proach when treating the propagation of quasi-monochromatic fields, such as
laser fields and other types of coherent beams within such materials. For more
details we refer the reader to textbooks [7].

SVEAmeans decomposing the electromagnetic fields in two factors: a rapidly
varying phase component and a slowly varying amplitude field A enveloping the
rapid oscillatory fields. The following Schrödinger-like dispersion equation can
be obtained for A in the SVEA approximation

2i
∂A

∂z
= −sign(β2)

∂2A

∂t̃2
, (6)

where β2 is the second coefficient in the Taylor expansion of the propagation
constant in the neighbourhood of the central resonance frequency. This is the
simplest form of the dispersion equation that one can envision in which actually
no material propagation shows up. It can be fulfilled in the practical situation
when the dielectric medium has sharp resonances (δωr ≪ ωr). Because of tech-
nological requirements, β2 is usually a negative parameter corresponding to the
so-called anomalous dispersion region. As can be seen, the SVEA equation has
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exactly the same mathematical form as the diffraction equation in the paraxial
approximation:

2i
∂Ψp

∂z
=
∂2Ψp

∂x2
, (7)

where Ψp is the electric field close to the propagation axis.
Many results in diffraction can be translated to the case of dispersion in

fibers by using the following substitutions

x → t̃ (ξ → τ)
y → r

z → z (ζ → ζ).

In the first row one passes from the grating axis to the time axis of a frame
traveling at the group velocity of a pulse. In the second row one passes from
the second grating axis that here we consider constant to the transverse section
of the optical fiber. Finally, the propagation axis remains the same for the
two settings. This change of variables will be used here to compare the results
obtained in the two frameworks.

The general solution of the SVEA dispersion equation (6) for the amplitude
A(z, t̃) depends on the initial conditions. Assuming a periodic input signal of

period T written as a Fourier series, i.e., A(0, t̃) =
∑n=∞

n=−∞
C0

ne
−iωnt̃, where C0

n

are the Fourier coefficients of the initial pulse at the entrance of an optical fiber
with linear response, one can write the pulse at an arbitrary z as follows:

A(z, t̃) =
∑

C0
n exp

[

i
ω2
nz

2
− iωnt̃

]

where ωn = 2πn/T. (8)

If the scaling of variables τ = t̃/T , ζ = 2z/zT is employed, A(z, t̃) can be
rewritten as

A(ζ, τ) =
∑

C0
n exp

[

iπn2ζ − i2πnτ
]

, (9)

because the Talbot distance corresponding to this case is zT = T 2/π. Just as in
the context of diffraction, the convolution of the unitary cell with the propagator
can be equally done before or after the paraxial approximation is employed. We
notice that Eq. 9 can be also written as

A(ζ, τ) =

∫ T/2

−T/2

A(0, τ ′)α(ζ, τ ′ − τ)dτ ′ (10)

since C0
n are nothing but the Fourier coefficients of the input signal and where

α(ζ, τ) =

∞
∑

n=−∞

exp
[

iπn2ζ − i2πnτ
]

(11)

can be thought of as the analog of the paraxial propagator [4]. In this expression,
the trick is to turn the continuous propagation axis into the rational number
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axis and also to perform the integer modulo division of n with respect to the
rational denominator of the propagation axis, i.e.,

ζ =
p

q
, n = lq + s. (12)

Through this approximation, the sum over n is divided into two sums: one over
negative and positive integers l, and the other one over s ≡ n (mod q)

α

(

p

q
, τ

)

=

∞
∑

l=−∞

q−1
∑

s=0

exp

[

iπ(lq + s)2
p

q
− i2π(lq + s)τ

]

. (13)

This form of α(ζ, τ) is almost exactly the same as given by Berry & Klein [4]
and by Matsutani and Ônishi [8]. The difference is that the sign of the exponent
is opposite. Following these authors one can express α in terms of the Poisson
formula leading to

α

(

p

q
, τ

)

=
1√
q

∞
∑

n=−∞

[

1√
q

q−1
∑

s=0

exp

[

iπ

(

p

q
s2 − 2sτ

)]

]

δ

(

τp +
n

q

)

, (14)

where τp is a notation similar to ξp. We can also write Eq. 14 in the form

α

(

p

q
, τ

)

=
1√
q

∞
∑

n=−∞

Φdisp(n; q, p) δ

(

τp +
n

q

)

,

which is similar to Eq. 5. The rest of the calculations are straightforwardly
performed though they are lengthy. By algebraic manipulations the phase factor
can be easily obtained and we reproduce below the two expressions for direct
comparison

Φdisp(n; q, p) =
1√
q

q−1
∑

s=0

exp

{

i
π

q

[

ps2 − 2s(n− qep
2

)
]

}

(15)

Φdiffr(n; q, p) =
1√
q

q−1
∑

s=0

exp

{

i
π

q

[

2s(n+
qep
2

)− ps2
]

}

. (16)

Both phases are special types of Gauss sums from the mathematical standpoint.
The difference of signs here appears because of the sign convention chosen for
the Fourier transform. Not surprisingly, the changes in the mathematical for-
mulation are minimal although the experimental setup is quite different. The
final results are the following:

p even, q odd:

Φdisp(n; p, q) =

(

p

q

)

J

exp

(

−iπ
4

[

(q − 1) +
p

q
(2np̄q)

2

])

,

Φdiffr(n; p, q) =

(

p

q

)

J

exp

(

+i
π

4

[

(q − 1) +
p

q
(2np̄q)

2

])

.
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p odd, q odd:

Φdisp(n; p, q) =

(

p

q

)

J

exp

(

−iπ
4

[

(q − 1) + 22̄3q
p

q
((2n− q)p̄q)

2

])

,

Φdiffr(n; p, q) =

(

p

q

)

J

exp

(

+i
π

4

[

(q − 1) + 22̄3q
p

q
((2n+ q)p̄q)

2

])

.

p odd, q even:

Φdisp(n; p, q) =

(

q

p

)

J

exp

(

−iπ
4

[

−p+ p

q
((2n− q)p̄q)

2

])

,

Φdiffr(n; p, q) =

(

q

p

)

J

exp

(

+i
π

4

[

−p+ p

q
((2n+ q)p̄q)

2

])

.

In all these formulas, the so-called Jacobi symbols in number theory [9] lie in
front of the exponentials and the bar notation defines the inverse in a given
modulo class, i.e., pp̄q ≡ 1(mod q).

If one tries to make computer simulations using the Fourier transformmethod,
the Gibbs phenomenon is unavoidable for discontinuous transmittance func-
tions. However, in the case of fiber dispersion, one class of continuous pulses
one could work with are the supergaussian ones, i.e., functions of the following
form

A(ζ = 0, τ) = A0 exp

[−τN
σ0

]

, (17)

where N is any even number bigger than two. The bigger the chosen N the
more the supergaussian pulse resembles a square pulse. In our simulations we
used the fixed value N = 12.

4 Irrational Talbot effect

4.1 Fractal approach

In the Talbot terminology the self-reconstructed images in the planes z =
(p/q)zT consist of q superposed copies of the grating as already mentioned,
completed with discontinuities. Although there is a finite number of images at
fractional distances, they still represent an infinitesimal subset of all possible
images that occur at the irrational distances.

In the planes located at irrational ‘fractions’ of the Talbot distance the light
intensity is a fractal function of the transverse variable. The field intensity has a
definite value at every point, but its derivative has no definite value. Such fractal
functions are described by a fractal dimension, D, between one (corresponding to
a smooth curve) and two (corresponding to a curve so irregular that it occupies
a finite area). In the case of Ronchi gratings, for example, the fractal dimension
of the diffracted intensity in the irrrational transverse planes is 3/2 [10].
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To obtain the fractal Talbot images, Berry & Klein considered the irrational
ζirr as the limit m → ∞ of a sequence of rationals pm/qm. In particular, they
employed the successive truncations of the continued fraction for ζirr, namely

ζirr = a0 +
1

a1 +
[

1
(a2+···)

] , (18)

where the am are positive integers. These sequences give best approximations, in
the sense that pm/qm is closer to ζirr than any other fraction with denominator
q ≤ qm. As a matter of fact, they considered the golden mean ζirr = (51/2−1)/2,
for which all am are unity, and the pm and qm are Fibonacci numbers. Because
of the symmetries of the paraxial field, the Talbot images are the same at ζG
and ζ̄G ≡ 1− ζG, that is

ζ̄G =
3− 51/2

2
= 0.381966... = lim

#→∞

{0 , 1
2
,
1

3
,
2

5
,
3

8
,
5

13
,
8

21
, ...} . (19)

Moreover, one can define the so-called carpets which are wave intensity pat-
terns forming fractal surfaces on the (ξ , ζ) plane, i.e., the plane of the transverse
periodic coordinate and the propagation coordinate. Since they are surfaces,
their fractal dimension takes values between two and three. According to Berry,
in general for a surface where all directions are equivalent, the fractal dimension
of the surface is one unit greater than the dimension of an inclined curve that
cuts through it. Taking into account that for a Talbot carpet the transverse
image curves have fractal dimension D = 3/2, then the carpet’s dimension is
expected to be 5/2. However, Talbot landscapes were found not to be isotropic.
For fixed ξ, as the intensity varies as a function of distance ζ from the grating,
the fractal dimension is found to be 7/4, one quarter more than in the trans-
verse case. Therefore the longitudinal fractals are slightly more irregular than
the transverse ones. In addition, the intensity is more regular along the bisectrix
canal because of the cancelation of large Fourier components that has fractal
dimension of 5/4. The landscape is dominated by the largest of these fractal
dimensions (the longitudinal one), and so is a surface of fractal dimension 1+
7/4 = 11/4.

4.2 Wavelet approach

Wavelet transforms (WT) are known to have various advantages over the Fourier
transform and in particular they can add up supplementary information on the
fractal features of the signals [6]. The one-dimensional WT of f is defined as
follows

Wh
f (m, n) =

∫

∞

−∞

f(s)h∗m,n(s)ds (20)

where hm,n is a so-called daughter wavelet that is derived from the mother
wavelet h(s) by dilation and shift operations quantified in terms of the dilation
(m) and shift (n) parameters:

hm,n(s) =
1√
m
h

(

s− n

m

)

(21)
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In the following, we shall use the Morlet wavelets which are derived from the
typical Gaussian-enveloped mother wavelet which is itself a windowed Fourier
transform

h(s) = exp[−(s/s0)
2] exp(i2πks). (22)

The point is that if the mother wavelet contains a harmonic structure, e.g., in
the Morlet case the phase exp(i2πks)), the WT represents both frequency and
spatial information of the signal.

In the wavelet framework one can write the expansion of an arbitrary signal
ϕ(t) in an orthonormal wavelet basis in the form

ϕ(t) =
∑

m

∑

n

ϕm
n hm,n(t) , (23)

i.e., as an expansion in the dilation and translation indices, and the coefficients
of the expansion are given by

ϕm
n =

∫

∞

−∞

ϕ(t)hm,n(t)dt . (24)

The orthonormal wavelet basis functions Wm,n(t) fulfill the following dilation-
translation property

hm,n(t) = 2m/2h(2mt− n) . (25)

In the wavelet approach the fractal character of a certain signal can be
inferred from the behavior of its power spectrum P (ω), which is the Fourier
transform of the autocovariance (also termed autocorrelation) function and in
differential form P (ω)dω represents the contribution to the variance of a signal
from frequencies between ω and ω + dω. Indeed, it is known that for self-
similar random processes the spectral behavior of the power spectrum is given
by [11, 12]

Pϕ(ω) ∼ |ω|−γf , (26)

where γf is the spectral parameter of the wave signal. In addition, the variance
of the wavelet coefficients possesses the following behavior [12]

varϕm
n ≈ (2m)

−γf . (27)

These formulas are certainly suitable for the Talbot transverse fractals be-
cause of the interpretation in terms of the regular superposition of identical and
equally spaced grating images. We have used these wavelet formulas in our cal-
culations related to the same rational paraxiallity for the two cases of transverse
diffraction fields (Fig. 1) and the fiber-dispersed optical fields (Fig. 2), respec-
tively. The basic idea is that the above-mentioned formulas can be employed
as a checking test of the self-similarity structure of the optical fields. The re-
quirement is to have a constant spectral parameter γf over many scales. In
the case of supergaussian pulses, their dispersed fields turned out not to have
the self-similarity property as can be seen by examining Fig. 2 where one can
see that the constant slope is not maintained over all scales. In Figs. 3 and 4
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the behavior of the wavelet transform using Morlet wavelets for the diffraction
field is displayed. A great deal of details can be seen in all basic quantities of
the diffracted field, namely in the intensity, modulus, and phase. On the other
hand, the same wavelet transform applied to the N=12 supergaussian dispersed
pulse (see Fig. 5), although showing a certain similarity to the previous discon-
tinuous case, contains less structure and thus looks more regular. This points
to the fact that if in diffraction experiments one uses continuous transmittance
gratings the fractal behavior would turn milder.

5 Conclusion

The fractal aspects of the paraxial wavefield have been probed here by means
of the wavelet transform for the cases of diffraction and fiber dispersion. In
the case of diffraction, the previous results of Berry and Klein are confirmed
showing that the wavelet approach can be an equivalent and more informative
tool. The same procedure applied to the case of fiber dispersion affecting the
paraxial evolution of supergaussian pulses indicates that the self-similar fractal
character does not show up in the latter type of axial propagation. This is
a consequence of the continuous transmittance function of the supergaussian
pulses as opposed to the singular one in the case of Ronchi gratings.

As a promising perspective, we would like to suggest the following exper-
iment by which irrational distances can be determined. The idea is that the
spectral index of the Talbot fractal images can be used as a very precise pointer
of rational and irrational distances with respect to the Talbot one. Suppose
that behind a Ronchi grating under plane wave illumination a CCD camera is
mounted axially by means of a precision screw. The Talbot image at zT can
be focused experimentally and can be used to calibrate the whole system. An
implemented real time wavelet computer software can perform a rapid determi-
nation of the fractal index γf , which in turn allows the detection of changes of
the distance in order to determine if the CCD camera is at rational or irrational
multiples of the Talbot distance. Supplementary information on the irrational
distances may be obtained from the amplitude-phase wavelet representations.
To the best of our knowledge, we are not aware of another experimental setup
in which irrational distances can be determined in such an accurate way. This
also points to high-precision applications in metrology.

Finally, we mention that a version of this work with more mathematical
details will appear soon [13].
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First Four Figure Captions

Fig. 1: (a) The fractal Talbot light intensity |Ψp|2 at the twelfth Fibonacci
fraction ζ = 144/377 ≈ 0.381963, which is already ‘very close’ to ζ̄G and (b)
the plot of the logarithmic variance of its wavelet coefficients (Eq. 24). The
line of negative slope of the latter semilog plot indicates fractal behavior of the
diffraction wavefield as we expected. The fractal coefficient is given by the slope
and its calculated value is γf .

Fig. 2: Snapshot of the dispersed supergaussian pulse for N = 12 at ζ =
144/377. The log variance plot is monotonically decreasing displaying a plateau
indicating a nonfractal behaviour of the N = 12 supergaussian pulse train.

Fig. 3: The wavelet transform of the intensity |Ψp|2 at fixed ζ = 144/377 for
(a) the unit cell and (b) half-period displaced grating unit cell. There is no
difference because the square modulus is plotted.

Fig. 4: Wavelet representations of: (a) the squared modulus of the amplitude
and (b) phase of the Talbot diffraction field for fixed ζ = 144/377 and a displaced
unit cell.
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Figure 1: (Color online) Wavelet representations of the (a) amplitude and (b)
phase of the Talbot dispersed supergaussian field (N = 12) for ζ = 144/377.
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