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The controllability of dynamical networks depends on both network structure and node dynamics.
For networks of linearly coupled linear dynamical systems the controllability of the network can be
determined using the well-known Kalman rank criterion. In the case of identical nodes the problem can
be decomposed in local and structural contributions. However, for strictly different nodes an alternative
approach is needed. We decomposed the controllability matrix into a structural component, which only
depends on the networks structure and a dynamical component which includes the dynamical description
of the nodes in the network. Using this approach we show that controllability of dynamical networks with
strictly different linear nodes is dominated by the dynamical component. Therefore even a structurally
uncontrollable network of different n dimensional nodes becomes controllable if the dynamics of it’s
nodes are properly chosen. Conversely, a structurally controllable network becomes uncontrollable for a
given choice of the node’s dynamics. Furthermore, as nodes are not identical, we can have nodes that are
uncontrollable in isolation, while the entire network is controllable, in this sense the node’s controllability
is overwritten by the network even if the structure is uncontrollable. We illustrate our results using
single-controller networks and extend our findings to conventional networks with large number of nodes.

Keywords: Network control, controllability, linear system.

1. Introduction

Complex networks can be used to model almost any large scale system, in this representation functional
units are represented as nodes and their interactions as links. The structural complexity of a system is
then described as a graph with features like the small-world and scale-free effects, sparsely connected
nodes with high clustering coefficients, among others [Chen et al. (2015)]. Additionally to the structural
complexity of the system there are different sources of complexity that can be considered while
modelling, e.g., one can consider the complexity in its node’s dynamical evolution; the diverse nature
of its nodes and links, or even mechanisms for adaptation that affect the network’s structural evolution
[Strogatz (2001)]. In particular, a dynamical network is a mathematical model where additionally to
the structural complexity of the system, the dynamical complexity given by the evolution of its nodes is
taken into consideration. As such, the dynamical analysis of its behaviours must include both: structural
and dynamical complexity [Wang (2002)]. Furthermore, the main reason to investigate the dynamics of
a system is to impose on it our desired objectives, that is to control it. Therefore, the first question one
can ask is about the possibility of achieving such a control objective, or in other words, one asks if the
dynamical network is controllable [Liu et al. (2011)].

Controllability is a central concept in control theory. A dynamical system is said to be controllable
if a control input can be designed to take it from an initial state to a desired state in finite time
[Rugh (1996)]. For a dynamical network, designing a control input for each node is a prohibitive
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and unnecessary effort. It has been shown that by applying controllers to only a fraction of its nodes
a dynamical network can be stabilized to its equilibrium. That is, a virtual control is applied to the
uncontrolled nodes as the control actions travel through the network connections, in this way one is
capable of controlling the entire network. This form of network control is usually referred to as pinning
control [Li ef al. (2004)]. From this perspective, the controllability of a dynamical network, does not
only depends on the dynamical features of its nodes and the structure of the network, but also on the
choice of where to apply the control inputs. Inspired by this realization on [Liu ef al. (2011)] a matching
algorithm was proposed to identify the minimum set of locations to control to direct the entire network
to a desired state.

In [Sorrentino et al. (2007); Sorrentino (2007)] the concept of pinning-controllability of a network
was coined to describe whether a dynamical network can be stabilized to an equilibrium point by
controlling only a small fraction of its nodes. However, this is markedly different to the conventional
meaning of controllability in control theory. In fact, one can see pinning-controllability as a
stabilizability condition rather than actual controllability of the network.

In the case of large scale linear systems, the concept of structural-controllability was first introduced
by Lin in 1974. A linear system is structurally controllable if the graph of (A, B) is spanned by a
“Cactus” (where, a Cactus is a connected graph in which any two cycles have at most one node in
common and any two graph cycles have no edge in common.) In other words, the graph of (A, B)
contains only accessible nodes and not dilation [Lin (1974)].This simple idea was further developed
by [Liu et al. (2011)], to provide a matching algorithm that identifies the minimum number of nodes
that required a control action (a feedback loop) to ensure that a directed and weighted network is
controllable, more specifically they show the network to be structurally controllable. Afterward, the
concept of structural permeability was introduced in [Lo Iudice F. (2015)], where an algorithm to
measure the structural propensity of networks to be controlled was developed. Additionally, Wang et al.
proposed to optimize the controllability of the network by minimum structural perturbations [Wang et
al. (2012)]. It is worth noticing that in these works the question is restricted to the structural component
of the network. In fact, as remarked in [Cowan ef al. (2012)], the above results consider only one
dimensional integrator nodes leaving the contribution of the node dynamics out of consideration. In this
paper, controllability of a dynamical network will always mean the classical concept of controllability,
taking into consideration both aspects: the connection structure of the network and the dynamical
description of its nodes.

Recently, Wang et al. investigated the controllability of MIMO networks with identical nodes, their
findings show that both: structural and dynamical aspects must be taken into consideration to establish
the controllability of a general structure networks Wang et al. (2015). In the context of multiagent
systems the controllability problem has been addressed by many authors. For example, in the work
by Tanner in 2004, it is shown that for a nearest-neighbours formation leader-follower, controllability
was achievable if the eigenspectrum of the resulting Laplacian submatrix was dominated by the leaders
contribution [Tanner (2004)]. These results were extended to multi-leader formations by Ji ez al. and
by Rahmani ef al. considering almost symmetric partitions of the follower population amount the
leaders [Ji & Egerstedt (2007); Rahmani et al. (2009)]. Additional works on the controllability of
multiagent systems with multiple leaders with and without direct connection to all the followers on
almost symmetric formations were considered in [Lou & Hong (2012); Zhang et al. (2011)]. The case of
switching topologies was also considered in [Liu ef al. (2008)]. Moreover, the formation controllability
for identical high-dimension linear and time invariant agents was considered in [Cai & Zhong (2010)].

It is worth remaking that in the above works, all nodes are identical. Therefore an important
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additional issue that needs consideration is the case of networks with different nodes. In this sense,
the work of Xiang et al. investigates the controllability of networks with nonidentical nodes. However,
the attention was restricted to a very particular type of non-identical nodes, which have intrinsic dynamic
described by an identical matrix in each node multiplied by a different kinetic constant. Moreover, this
matrix is the same one of the inner-couplings between the states of the network.That is, they are only
different by a kinetic constant [Xiang et al. (2013)].

In this paper we investigate the controllability of weighted and directed networks with strictly
different nodes. We restrict our attention to the case of linear nodes with linear couplings, as such
the controllability of the network can be determined using the Kalman rank criterion. To show the
contributions of the network structure and the node’s dynamics we decomposed the controllability
matrix into a structural and a dynamical components. We find that for dynamical networks with strictly
different linear nodes controllability is dominated by the dynamical component. Then, regardless of
the controllability of the structure of the network the dynamics of the nodes can be chosen as to
determine the controllability of the network. That is, the network structure is uncontrollable even if
the dynamics of its different n-dimensional nodes is properly chosen. Alternatively, if the network
topology are controllable, the entire network becomes uncontrolable for a given choice of the node’s
dynamics. Moreover, since the node’s dynamics are nonidentical, is possible to have situations where
the node dynamics are not controllable isolated from the network, however, we show that is possible
for the entire network to become controllable. In this way, the controllability of the node in isolation
is overwritten by the network even in the case where the structure is uncontrollable. Our findings are
extended to conventional single-controller networks with large number of nodes.

2. Preliminaries

Consider a controlled network of N identical linear system with weighted and directed connections, the
dynamics of each node are given by:

N
%) =Axi(t)+ Y, LTxj(t)+8Bu, i=1,....N 2.1
J=LJA

where x;(t) = [xi1(t),xi2(1), ..., xin ()] T € R" is the state vector of the i-th node; the system’s matrix
A € R™" describes the intrinsic dynamics of each linear node. I" € R" " is a zero-one constant matrix
indicating the inner-couplings between states, the outer-coupling matrix describes the connections
between nodes . = {.%;;} € RV and it is constructed as follows: the entry .%}; # 0 if the j-th
node receives information from the i-th node, otherwise .%;; = 0. Since the network is directed .%}; is
not necessarily identical to .Z;. The control input to the i-th node is u;(t) € R”, with B € R"*? the
control input matrix, which is identical for every node.

Following the pinning control approach, we consider that only a small fraction ¢ = [pN| (p < 1) of
nodes in the network are controlled. To indicate that the i-th node in (2.1) is subject to a control action
we set 6; = 1, otherwise §; = 0. Without lost of generality, we can reorder the node indexes such that
the first g nodes of (2.1) are controlled, while the remaining N — g nodes have no controller. Then, in
vector form the dynamical network can be rewritten as:

X(t) = (Iy®A+ZL @)X (1) + (A®B)U(r) 2.2)

where X (¢) = [x1(t) ", ...,xn(t) T]T € R" is the state vector of the entire network, and U () = [u; (t) T,
ottg(t) T ,0,...,0] T € RMP is the network’s control input. Iy is the N-dimensional identity matrix, ® is
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the Kronecker product, and A = Diag([1,.., 1,0, ...,0]) € R¥V*V,
—~— ——
q N—q
Defining o) = (Iv QA +.Z ®TI") and # = A @ B, one verifies that the network in (2.2) is a linear
system of the form:
X(t) = X (t)+BU(t) (2.3)

A classical result in control theory for linear time invariant systems is the so-called Kalman
Controllability criterion, which can be expressed as follows:

Lemma 1. [Rugh (1996)] For a system in the form of (2.3) the following declarations are
equivalent:

I. System (2.3) is completely controlable.

II. The controllability matrix
Dy = | B, 5B, ..., )" B (2.4)

is of full rank, i.e. Rank(2y) = Nn.

III. The relation
vty =Av' implies vV o # 07 (2.5)

where v is a no-zero left-eigenvalue of the matrix . corresponding to the eigenvalue

A.

Consider now the case when the nodes have no dynamics (A = 0,), the network becomes X (¢) =
(Z®IX(t)+ (A®B)U(t) or equivalently

X(t) = deX(t)+BU(t) (2.6)
where /¢ = £ @I which following Lemma 1, is controllable if
Dy =B, Ay B, ..., B (2.7)

is full rank. In particular, for one-dimensional systems (n = 1, I' = 1) the network (2.7) becomes the
one considered in [Liu et al. (2011)], to identify the locations for control action using the matching
algorithm. As such, using their proposed matching algorithm, given a (%) network connection
description one can identify a minimum set of locations to control () that renders the dynamical
network controllable. That is, it makes the network structurally controllable. By contrast in [Cowan
et al. (2012)]where inclusion of first-order self dynamics is addressed; it is shown that structural
controllability can be achieved with a single input, which should be attached to a spanning tree that start
at input. Even though in Cowan ef al. the contribution is in the sense of structural controllability, this
brings up to the question whether the dynamic component predominates over the structural component
of the network. Moreover, they assumed that the dimension of the state of each node is one.

Now lets consider the case where the nodes in the network are nonidentical. That is, the network is
given by

N
Xi(t) =Api(t) + Z ﬁjFXj(l‘)—F&Bu,‘, i=1,...,.N (2.8)
j=1j#i
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where A; € R"™" is the system’s matrix of the i-th node. In vector form the network becomes
X1t)=(A+2eI)X(t)+2BU(1) (2.9)

where A = Diag([A,A,,...,Ay]) € RN"N A before, the controllability of the linear system in (2.9)
is equivalent to requiring full rank for the matrix

=B, dB,..., "N B (2.10)

where & = A+ 2 Q1.
In the work by Xiang er al. a very particular type of nonidentical node was considered, namely,
A; = ¢;I'. For these nearly identical nodes, one can write the node’s dynamics as:

A=FI (2.11)
where ¢ = Diag([ci,c¢2,...,cn]) € RY*N are kinetic constants [Xiang et al. (2013)]. It follows that the
network of nonidentical nodes (2.9) can be rewritten as:

X(t)=(L2N)X([t)+2BU () (2.12)

where .Z = ¢ +.% € RV, Letting v and v, be the left eigenvectors of . and I, respectively. The
third part of Lemma 1 can be used to establish the controllability of (2.12) in terms of two simplified
conditions that must be satisfied simultaneously [Xiang et al. (2013)]:

i. The pair (I",B) is completely controllable.

ii. The left eigenvectors of . have nonzero values in their first g entries.

Although this result simplifies the analysis by discomposing the controllability problem into a local
and a global conditions (i and ii, above), it can only be applied to a very restricted type of networks. In
the following section, we propose an alternative decomposition for the general case, i.e., when A; # ¢;I".
It is important to emphasize that the controllability addressed in the present paper is fundamentally
different from the “structural controllability” and “pinning controllability”.

3. Controllability of networks with strictly different nodes

The controllability matrix for a network of nonidentical linear nodes (2.8) becomes
9= B,(A+L)B,(A+ L) B,....(A+ L)V 5
where A = Diag([A1,As,...,Ay]) € RV Nt and & = 2@ € RN,

The controllability matrix above can be readily decomposed into a structural and a dynamical
component, such that

2= cQStru + QDyn (3.1)

where . . .
Dy = | B, LB, L*B, ..., L1 B], and (3.2)
Dpyn = [0,AB,(A?+ AL+ LN)B,...,(A+ 2N~ — 2NN 5z (3.3)

In general, the rank of 2 is independent of the rank of this structural and dynamical components.
That is, the interaction between Zg;.,. and Zpy, can lead to a controllable network (2.8) even if the
structural component is not full rank, and vice versa. To illustrate this point lets consider the following
cases:
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u, ()

(@ (b)

FIG. 1. Tllustrative examples for the controllability of dynamical networks.

3.1 Nodes without dynamics

Let the nodes for each network described in Figure 1 be one-dimensional, with no dynamics (A} =
Ay = A3 =0 € R), and linearly coupled. Then, the controllability matrices for these networks are,
respectively:

B 0 0 B 0 O
‘Q(a)f = 0 Bl 0 73(17)3 = 0 Bbh; O s

0 0 Bl3y 15 0 Bl3; 0

B 0 0 B 0 0
Qe =\| 0 Bl 0 Lag =\ 0 Bhi Bhsl

As such, the networks (a) and (c) are structurally controllable for any nonzero choices of the
connection strengths; while (b) is always structurally uncontrollable, and the controllability of (d) is
dependent on choice of strength values, it is only controllable if the condition l3zl§1 # b3 l%l is satisfied.

3.2 Nodes with identical one-dimensional dynamics

Considering identical one-dimensional node dynamics (A; = a € R, Vi), the corresponding controllability
matrices for the networks in Figure 1 become:

B aB  d’B B aB d’B
Q(a) = 0 Blz] 2613121 ,Q(b) = 0 Blgl 2613121 5
0 0 Bl32[21 0 Bl31 2613131
B aB a’B B aB a’B
Q(@ = 0 By 2aBly; ,Q(d) = 0 Biy B(2a121 + 123131)
0 Bl Bl31(2a+l33) 0 B3 B(2a131 + b))
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The conclusions of the previous case remain valid, the networks (a) and (c) are controllable, (b) is
uncontrollable, and (d) is only controllable if /3213, # l3/3;.

3.3 Nodes with nonidentical one-dimensional dynamics

Consider that the nodes in the networks shown in Figure 1 are nonidentical (4; = a; € R,Vi, with a; #
ap # az) we have:

B aB a’B B aB a’B

0 Bl B(a1 Jraz)lz] , 0 Bl B(a1 Jraz)lz] ,

0 0 Bl3o 15 0 Bl Blai+a3)l
B aB a’B B aB a’B
0 Bl B(a1+a2)121 , 0 Bl B((a1+a2)121+123131)
0 Bl B(ai+az+133)h1 0 Bl B((ar+a3)l1+13l)

In the case of nonidentical node dynamics the conclusions change. The networks (a) and (c) are
both controllable. With the network in (d) is controllable only if the new condition (a; + a3)l31lp1 +
1321%1 — 1231§1 # 0 is satisfied. However, the most striking change occurs for network (b), which becomes
controllable for nonidentical node dynamics (a; # a3).

We remark that the controllability matrices of the networks shown in Figure 1 with nonidentical
nodes can be easily decomposed as in (3.1) resulting on:

0 0 0 aB a%B
Q(a) = Q(a)Stru +°@(a)Dyn = Bl 0 +| 0 0 B(a+a)h ,
0
aB

0 Bl 0 0
0 0 0 a:B
D) = Lp)siru + 2L (b)pyn = Bhby 0 |+ O Blay +ax)ly |,
Blz; 0 0 B(a) +a3)ls
a1B a%B

Q(c) = Q(C)Stru + a@(C)Dyn = g(al + a2)121 s

Bl31  Blssls (a1 +a3)ls
0 0 a1B a%B
Bl Blnly |+ B(a) +az)h

0
Bl31  Blyl 0 O Bla+az)h

B
0
0
B
0
0
B 0 0
0
0
B
2y = 2a)siru+ L(a)pyn = 8

It is easy to verify that the structural components of the controllability matrix for the network (b) in
Figure 1 is not full rank (Rank(Q( b)St ) = 2), nonetheless the controllability of the dynamical network is
full rank (Rank(2;)) = 3). This is due to the contribution of dynamical component of the controllability
matrix (Rank(£2)py,) = 2). As the rank of the matrix sum must satisfy:

Rank(2;)) < Rank(Z3);r,,) +Rank (23 py,) (3.4)

3.4 Nodes with nonidentical n-dimensional dynamics

Now we consider the case of higher dimensions (n > 1). For simplicity let n = 2, then we have

A,-(a“ di2>7B<b1)’F<Y1 0>.
ap  ap by 0 »
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It is easy to verify that if the condition b%a,g — b%aiz # bi1by(ai1 — ai) is satisfied, then the i-th node
is controllable, that is, the pair (A;, B) is controllable.

In what follows we let [;; = 1 if the j-th node receives information from the i-th node, zero otherwise;
and% =’)/2=b] =b2= 1.

3.4.1 All pairs are controllable. 1et the node dynamics be given by

10 1 -1 12
w1 ) ( ) e (0 )

Then all pairs (A;, B) are controllable. For the networks in Figure 1 the controllability matrices are:

1 00 00 O o1 1 1 1 1
1 00 00O 023 4 5 6
01 0000 001 -2 -9 —18
2(a) = Z(a)siru T L(a)pyn = 010000 /|7l o004 8 10 6
001000 000 4 14 41
001000 000 6 18 42
1 00 00O o1 1 1 1 1
1 00 00O 0 2 3 5 6
01 0000 001 -2 -9 —18
2v) = Lp)siru T 2Lp)pyn = 010000 /|7l o004 8 10 6
01 0000 0 0 4 13 36 93
01 0000 0 0 4 11 28 69
1 00 00O o1 1 1 1 1
1 00 00O 023 4 5 6
01 00 0O 001 -2 -9 —18
2(e) = 2()siru T ZL(e)pyn = 010000 /|| 004 8 10 6
01 1 1 11 0 0 4 20 78 280
01 1 1 1 1 0 0 4 17 60 205
1 00 00O 01 1 1 1 1
1 00 00O 023 4 5
01 1 1 11 001 2 6 25
Zay=ZasmtZapm=| 09 1 1 11 1|70 0 4 14 39 106
01 1 1 11 0 0 4 17 57 175
01 1 1 1 1 0 0 4 17 54 157

Although the structural components in (b) and (d) are not full rank (Rank(Z2()5,) =
Rank(Z4)5r,) = 2) all the networks in Figure 1 are controllable (Rank(Z(,)) = Rank(Z;)) =
Rank(Z,)) = Rank(Z24)) = 6). Furthermore, by construction the rank of the structural component can
not be larger that N (Zs;,,, < N), therefore the contribution of the dynamical component (Rank(Zpy,) <
Nn — 1) dominates the rank of the controllability matrix of the entire network.
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3.4.2 A pair without control input is uncontrollable. Consider that the node’s dynamics are given

by
1 0 -3 3 1 2
w=(i V)= (5 5) = (1 3)

In this case, the node that receives the control action is controllable with B the same as pair
(A3,B), however, pair (A2, B) is uncontrollable. The results show that all networks in Figure 1 remain
controllable (Rank(2,) = Rank(Z,) = Rank(2,) = Rank(2,;) = 6). It is worth remarking that
although the node A, is uncontrollable with B in isolation, the entire dynamical network is controllable.

3.4.3 The node with control input is uncontrollable. Finally, consider the case of nonidentical linear
nodes where only the node with the control input is uncontrollable. That is, the node’s dynamics are

given by:
-2 2 1 -1 1 2
w= ()G )=

In this case the pairs (A, B) and (As,B) are controllable, while the pair (A;,B) is uncontrollable.
The controllability matrices for the network in Figure 1 are given by:

1 00000 000 0 0 0
1 00000 000 O 0 O
01 0000 000 -2 -4 —4
2o =Z2@smutZapm=10 1 000 0lT|o o2 2 0o -4
001 000 000 3 9 23
001 000 000 4 9 18
1 00000 000 0O 0 0
1 00000 000 0O 0 0
01 0000 000 —2 —4 —4
2oy =2esut2opm =10 1 00 0 olT|o o2 2 0o -4
010000 00 3 7 17 41
01 0000 002 5 12 29
1 0000 0 000 0 0 0
1 00000 000 0O 0 O
01 0000 000 —2 —4 —4
2(0) = 2(siru+ ZL(e)pyn = o1 0000|7002 2 o0 -4
01 1 1 11 0 0 3 13 47 163
01 1 1 11 0 0 2 9 33 115
1 00000 000 0 0 0
1 00000 000 0 0 0
01 1 1 1 1 000 1 5 19
2(a) = 2@siut 2(aypym = o1 1111|7002 6 18 5
01 1 1 11 0 0 3 10 32 94
01 1 1 1 1 00 2 9 27 79
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All the networks in Figure 1 are uncontrollable (Rank(Z2,) = Rank(Z,) = Rank(Z2,) =
Rank(Z2,;) = 5). Even in the cases where the network structure is controllable, e.g., Rank(Z(4)sr) =
Rank(Z¢)siruc) = 3, the entire network is not controllable. Again, the controllability of the entire
dynamical network is determine by the contribution of the dynamical component.

In the following Section we investigated the controllability of a couple of well-known directed
network configurations with a single controller.

4. Controllability of typical networks with strictly different nodes.

4.1 Directed chain of n-dimensional nodes

B lZl lJ'.’ l\'.(\rl)
0000

FIG. 2. A directed chain network with a single controller

Consider a directed chain network with a single controller input. Naturally, we assume that the
external control input is at node 1, as shown in Figure 2. The nodes in the network are nonidentical
n-dimensional linear systems, such that A = Diag(A,As,...,Ay) € RNV For simplicity, let the
inter-coupling matrix be I" = I, with B = [by, b, ...,b,] " € R" and b; = 1 Vi. Since the outer-coupling
matrix for the network in Figure 2 is:

0 O 0

b1 O 0

LChain = 0 13’2 0 0
S0 . :

0 - 0 Iyw—ny O

The controllability matrix for the directed chain network is readily found to be:

B 0 0 0 0
0 Bl --- 0 0 0
Dchain = ZLChain,Stru + QChain,Dyn = : .. . 0 0 "
0 0 0 Blyy-1---ly 0 0
0 BA BA? BAN"2 BAY!
0 0 BA+A)b - B(A; + A7)V 21y, B(A+Ay)N 1y
0 0 0 B(A1+...—|-AN)IN,N,1"-121 B(A1+...+AN)N"711N7N71-~~121

We have that Rank(Zcpainsi) = N, that is the network structure is controllable. However, the
controllability of the overall dynamical network is determine by the contribution of the dynamical
component, since its rank larger, in fact is at most Rank(QChain’Dyn) < Nn—1. From the above
observations we have the following result:
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Theorem 1. Although the directed chain network in Figure 2 is structurally controllable, it is
possible to choose strictly different node dynamics Aj,As,...,Ay, such that the entire dynamical
network becomes uncontrollable.

Proof: Since the contribution of the structural component to the rank condition is N. We need to
choose A; such that, BA; is a null matrix, this reduces the rank of Zcpgin pys by one. Next, n — 1 of the
matrix sums A; +Aj, and A| +A, + ... + Ay are force to be null. For this chose of node dynamics one
has that Rank(Zcpgin,pyn) < N(n—1) — 1. Then, if follows that Rank(Zcpuin) < Nn— 1, that is, the
controllability matrix for the dynamical network is not full rank. Q.E.D.

Theorem 2. The directed chain network of n-dimensional linear systems in Figure 2 can become
uncontrollable even if the isolated pairs (4;,B) with i = 2,3,...,N are controllable.

Proof: In the same sense than the previous proof, for uncontrollability of the entire dynamical
network we requires that BA; be a null matrix, this is equivalent to requiring the pair (Aj,B)
uncontrollable when A;B = BA;. In other words, [B,AIB,A%B, ...,A’f’lB] not be of full rank, which
is simply to verify when A|B = 0. However, the requirement that n — 1 of the matrix sums A|; +A;, and
A1 +As + ...+ Ay being null, does not involve B, therefore is possible to satisfy this restriction even if
the node dynamics are controllable. Q.E.D.

4.2 Directed star of strictly different nodes

FIG. 3. A directed star network with a single controller

Consider a directed star network with a single controller input. Naturally, we assume that the
external control input is at the central node, as shown in Figure 3. As before, he nodes in the network
are nonidentical n-dimensional linear systems (A = Diag(A,As, ...,Ay) € RV™N): the inter-coupling
matrix is I = I, with B = [by,bs,...,b,] " € R" and b; = 1 Vi. Then, the outer-coupling matrix for the
network in Figure 3 is:

0 o0 0

by 0 - 0

Lstar = | 31 0 0 0
: (U :

Ivi - 0 0 0

The controllability matrix for the directed star network is:
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QStar = QStar,Stru + QStar,Dyn =

B 0 - 0 0 BA; BA% BAIIVm—l
0 Bbh; --- 0 0 0 B(A+A)b; - B(A+AN)V" 1y
0 Blnm 0 O 0 0 B(A+AN)Iy1 - BA+AN)N" Iy,

For this network we have that Rank(Zs;.5:r) = 2, that is the network structure is uncontrollable.
However, since the controllability of the overall dynamical network is determine by the contribution of
the dynamical component, is possible to chose the node’s dynamics such that the dynamical network
becomes controllable. That is:

Theorem 3. Although the directed start network in Figure 3 has the structure component
uncontrollable, it is possible to chose strictly different node dynamics A;,A», ...,Ay, such that the entire
dynamical network becomes controllable.

Proof: Since the contribution of the structural component to the rank condition is 2. We need to
choose Ay such that, BA; is different that zero, requiring additionally that the matrix sums Ay + A}, for
j=2,...,N also be different than zero. We have that Rank(Zs;a,py») = Nn— 1. Then, if follows that
Rank(Zs,r) < Nn+ 1, that is, the controllability matrix for the dynamical network can be full rank,
even if the rank of the structural component is 2. Q.E.D.

Theorem 4. The directed star network of n-dimensional linear systems in Figure 3 can become
controllable even if an isolated pair (A;,B) with i # 1 is uncontrollable.

Proof: Following the same reasoning as in the prevous proofs. For the directed star of nonidentical
n-dimensional linear systems, we require that BA| be a non zero matrix, this is equivalent to requiring
the pair (A1, B) controllable when A;B = BA|. However, the requirement that the matrix sums A; + A»,
and A + A3, ..., A] + Ay be different that zero, can be relaxed. That is, we can have a pair (4;,B)
with i # 1 uncontrollable, which results in a reduction of the rank of dynamical component by one
(Rank(Zs;ar.pyn) = Nn —2) and still satisfy the rank conditions since (Zg;qr) < Nn. Q.E.D.

5. Concluding Remarks

The controllability of dynamical networks with strictly different n-dimensional linear systems is
dominated by the dynamical component of the controllability matrix. That is, although the structural
aspects of the network are significant and provide effective guidelines for the design of pinning control
strategies, our results show that the controllability of the dynamical network depends on the choice
of local node dynamics. As such, network of strictly different nodes, with the structural component
controllable can become uncontrollable; conversely, a network with structural component uncontrollable
becomes controllable, depending on the contributions of its different node dynamics. Moreover,
our results show that is not necessary for every node in the network be controllable in isolation to
have a controllable network: Additionally, even if some pairs are controllable is possible to have an
uncontrollable dynamical network.

We restrict our attention to conventional single controller networks of strictly different
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n-dimensional linear nodes. In particular, for a directed chain network, which by construction the
structural component is controllable, we have that a choice of strictly different local dynamics can be
made such that the dynamical network becomes uncontrollable. Even if the nodes without control input
are controllable. Similarly, we investigate a directed star network, which by construction the structural
component is uncontrollable, in this case we showed that there is a choice of strictly different node
dynamics such that the dynamical network becomes controllable. In addition to this, we found that
even if a node without control input was uncontrollable the directed star dynamical network can still be
controllable.

At first glance, to find that the controllability of a dynamical network of nonidentical nodes
is dominated by the dynamical component seem discouraging. Since in recent year the structural
controllability have been used to establish the set of matching node where control actions need to be
applied to the network in a pinning control scheme. However, one must realize that it opens a door for
the possibility of controllability for networks with uncontrollable structure. In fact, our results show that
even in the case of a single control input, is possible for the dynamical network to be controllable if their
nodes are strictly different. This seems to indicate that, in the case of networks with strictly different
nodes, far less control actions are require to make a dynamical network controllable that does indicated
a matching algorithm based only in its structure.
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