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We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model
oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-
Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated
inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive
catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore
and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the
oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed
feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
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I. INTRODUCTION

Oscillatory chemical reactions show complex nonlinear
phenomena with a rich diversity of patterns, many resembling
those found in biological processes. For instance, striking
similarities can be noted in wave patterns displayed by the
Belousov-Zhabotinsky (BZ) reaction [1–5], starving amoeba
Dictyostelium discoideum [6], and calcium waves in Xenopus
laevis oocytes [7,8]. Turing was the first to propose reaction-
diffusion as a possible underlying mechanism in the process
of morphogenesis [9]. The structures predicted by Turing
have been experimentally observed in both continuous [10]
and cell-compartmentalized chemical systems [11]. Chemical
oscillators are reaction-diffusion systems, which have been
proposed and used as model systems for elucidating complex
biomimetic dynamics [11–14]. The BZ reaction is the proto-
typical chemical oscillator in such investigations. The reaction,
which occurs in acidic aqueous solution, consists of the oscil-
latory oxidation by bromate of an organic substrate, usually
malonic acid, catalyzed by metal ions or metallocomplexes.
A photosensitive version of the BZ reaction, which uses the
light-sensitive complex Ru(bpy)3

1 as the metal catalyst, can be
modulated by the application of an inhibiting electromagnetic
field [15,16]. Field, Körös, and Noyes performed, on the
grounds of chemical kinetics, a detailed analysis of the BZ
reaction and developed a mechanism, the Field-Körös-Noyes
(FKN) mechanism, to account for its oscillatory behavior [17].
The FKN mechanism identifies 11 principal reactions and 12
chemical species and successfully reproduces the behavior of
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1Ru(bpy)3 tris(bipyridine)ruthenium(II) is a coordination complex

that can be used to trigger photooxidation or photoreduction.

the BZ reaction [18]. Later, the model was extended to include
photoinhibition [16,19,20].

The application of feedback to a nonlinear dynamical
system can induce complex behavior. Feedback can also be
used as a control mechanism to drive the system toward a
desired dynamics. Different feedback strategies have been
explored. Time-delayed feedback has demonstrated its efficacy
in controlling chaotic systems [21,22] since this approach was
introduced by Ott and coworkers [23] and later by Pyragas
[24]. Additionally, delayed feedback has been used to suppress
relaxation oscillations [25], synchronize ensembles of coupled
oscillators [26], and investigate emergent dynamics in mechan-
ical [27] and optoelectronic [28] systems. This technique has
also been investigated in chemical and biological systems in
both pointlike and spatially extended diffusive systems. Time-
delayed feedback was applied to control unstable orbits in the
oscillatory BZ reaction [29]. A rich diversity of spatiotemporal
patterns has been investigated by the use of differential-
difference equations in a one-species reaction-diffusion system
with delay [30]. Control of spatiotemporal chaotic patterns has
been attained in the reaction-diffusion Gray-Scott two-species
model by means of time-delayed feedback [31]. This strategy
can be harnessed to induce pattern transitions [32], spiral waves
and their modulation [33], and complex dynamics of localized
structures [34] and Turing patterns [35] in reaction-diffusion
systems. The emergence of spatial patterns triggered by a
time delay via a Hopf bifurcation is observed in a plankton
prey-predator model [36]. The combination of noise, inherent
to any physical system, with time delay in the feedback applied
to oscillatory systems can induce undesirable oscillations
[25,37], a phenomenon observed in different systems [38–40].
The introduction of a second feedback loop with delay has
been applied to stabilize the system or suppress the undesirable
dynamics [41–43].
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The application of global feedback has been investigated
with oscillatory systems [44], coupled oscillator networks
[45,46], and spatially distributed reaction-diffusion systems
[47,48]. The combination of time-delayed with global feed-
back has been explored in chemical systems [49] and oscillator
arrays [50]. Double delayed feedback [51], event-triggered
feedback [52], and variable delay feedback [53] have also been
explored. The above investigations have employed negative
feedback, positive feedback, or both.

Time delays can arise from finite time propagation and
processing of signals. A reasonable assumption in systems with
time-delayed feedback is that in real processes time delay will
not be deterministic, but in general will undergo stochastic
fluctuations as a consequence of uncontrolled variables or
perturbations. This is particularly important in synchronization
processes when the intended synchronizing elements do not
share a unique time delay in their feedback. Nevertheless,
in the active and diverse field of research on feedback, to
our knowledge there have been no previous investigations
of the role of feedback with stochastic time delay and its
effects on system dynamics. We investigate here the behavior
of a model chemical oscillator subjected to a time-delayed
negative feedback where the delay time is stochastic with a
known probability distribution, and we compare our results
with the effects of a deterministic time delay. We perform
numerical experiments on the photosensitive FKN mechanism
augmented with inhibitory electromagnetic radiation to study
the effects of applying a negative feedback (NFB). The light
intensity is set proportional to the instantaneous concentration
of photosensitive catalyst in the reaction, and we choose the
normal and Gumbel distributions for the stochastic time delay.

II. SIMULATION

We investigate the effect of time-delayed feedback on
the dynamics of the FKN mechanism with photoinhibition.
NFB is applied as an inhibitory electromagnetic radiation
field on a point FKN oscillator. An experimental realization
approximating a point FKN oscillator is a small drop [54,55] or
a continuously stirred tank reactor containing the BZ reaction
[56]. The complete model used in the simulations is presented
in Eqs. (1)–(10), which include time-delayed feedback by
photoinhibition:

ẋ1 = −k1x1x2 + k2x2 − 2k3x
2
1 − k4x1 + krx

2
6 + kredx6x7,

(1)

ẋ2 = −k1x1x2 − k2x2 − k5x2x4 + k6x5 + k7x5 + k9x3 + φ,

(2)

ẋ3 = kredx6x7 − k9x3 − k10x3 + φ, (3)

ẋ4 = 2k1x1x2 + k2x2 + k3x
2
1 − k5x2x4 + k6x5 − k8x4, (4)

ẋ5 = k5x2x4 − k6x5 − k7x5, (5)

ẋ6 = 2k4x1 − 2krx
2
6 − kredx6x7, (6)

ẋ7 = −kredx6x7 + k9x3 + k10x3 − φ, (7)

φ(x,t) = k(I )x7b/(bC + b), (8)

k(I ) = K1I, (9)

I = K2x3(t − τ ). (10)

The ordinary differential Eqs. (1)–(7), excluding the func-
tion φ, are generated from the original FKN mechanism under
mass action kinetics and constitute an adequate model of the
BZ reaction. Here, x1 = [HBrO2], x2 = [Br−], x3 = [oxidized
catalyst], x4 = [HOBr], x5 = [Br2], x6 = [BrO·

2], and x7 =
[reduced catalyst]. Additionally, x3 + x7 = c0, where c0 is
the total concentration of the catalyst either in reduced or
oxidized form, which remains constant over time. The cata-
lyst, Ru(bpy)3, which has reduced [Ru(bpy)3]2+ and oxidized
[Ru(bpy)3]3+ forms, is used in the photosensitive version of the
BZ reaction. When there is no illumination, an idealized point
BZ reactor, or alternatively the point FKN mechanism, behaves
as a nonlinear oscillator. The photosensitive BZ reaction is
inhibited partially or totally by electromagnetic radiation,
which is accounted for by the presence of the function φ

[defined in Eq. (8)] in Eqs. (2), (3), and (7) of the photosensitive
FKN mechanism. Photoinhibition is mediated by bromide
ion when the photosensitive catalyst Ru(bpy)3 is subjected
to electromagnetic radiation (λ = 450 nm) [16]. Here, b =
[BrCH(COOH)2], bC = 0.05 M, and k(I ) is the reaction
rate constant for light-mediated production of [Ru(bpy)3]2+*
(photo-activated [Ru(bpy)3]2+), which in turn promotes the
production of bromide (see Refs. [19,20] and [16] for details).

We perform numerical experiments to simulate the ap-
plication of an inhibiting radiation beam of intensity I to
the FKN oscillator to build a NFB signal. We assume that
k(I ) is proportional to the inhibitory radiation intensity I

according to Eq. (9). Additionally, in Eq. (10) we define I to
be proportional to the concentration of oxidized catalyst (x3 =
[Ru(bpy)3]3+) at t − τ , where t is time and τ a time delay. K1

and K2 are appropriate constants for dimensional consistency.
Thus, if x3 (the oxidized catalyst concentration) increases, the
inhibitory radiation illuminating the oscillator rises after a time
delay τ , which in turn increases the concentration of bromide,
thereby incrementing the inhibition on the reaction. The net
result is that the radiation inhibition φ is dependent upon the
time-delayed concentration of the species x3. We can tune the
total and average radiation intensity by varying I .

We explore different scenarios as described below by apply-
ing feedback without time delay (τ = 0) and with a time delay
τ . When τ > 0, we examine the delay effects and discover the
preservation of key aspects of the FKN dynamics in the pres-
ence of feedback with constant (therefore deterministic) and
with stochastic time delay. The constant time delay calculation
is straightforward. We apply stochastic time delay as follows.
At each solution point while solving the system of differential
Eqs. (1)–(7), we control, through Eq. (10), the time delay
τ stochastically, choosing it from a given probability distri-
bution. Hence, τ is time-dependent. For stochastic time delay,
we investigate two probability distributions, the normal distri-
bution and the type I extreme value distribution (Gumbel dis-
tribution) of the minimum [57]. In the first case, τ is a random
number taken from a normal distribution with known mean
μ and standard deviation σ . In the second case, τ is a random
number taken from a Gumbel distribution with known location
parameter α and scale parameter β according to the expression.

P (t − τ ) = β−1 exp

[
t − τ − α

β
− exp

(
t − τ − α

β

)]
.

(11)
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For each distribution we analyze six families, varying the
width of the distribution by choosing six values of the standard
deviation (σ ) for the normal distribution and six values of the
scale parameter (β) for the Gumbel distribution. For simplicity
in exposition, we define the nominal time delay τN such
that: (i) τ = τN when τ is constant, (ii) μ = t − τN when
τ is stochastic and normally distributed, and (iii) α = t − τN

when τ is stochastic and follows a Gumbel distribution. As a
result, the distribution from which stochastic time delay, τ , is
obtained, is constantly translated to the right at the same speed
as t increases, i.e., as each new solution point is calculated. The
distribution is centered (μ for the normal and α for the Gumbel
are located) behind t an amount τN . Feedback is applied only
when t � 397 + 2τN s, and τN is at least five times larger than
the width of the distribution (τN � 5σ , 5β). As a consequence,
only the tails of the distribution reach τ < 0 and τ > t and the
probability to obtain these values of τ is zero in our simulations.

The system of differential Eqs. (1)–(7) is numerically inte-
grated with MATLAB variable order, multistep solver ode15s,
which is based on the numerical differentiation formulas and
optionally the backward differentiation formulas, methods
particularly suitable to solve stiff problems [58–60].

III. RESULTS AND DISCUSSION

First, we explore the role played by the average intensity
level of the applied inhibiting radiation intensity, I . Due to the
fundamental role played by the oxidized photosensitive cata-
lyst x3, and since all seven FKN variables have the same oscilla-
tion frequency, we use x3 to characterize the system dynamics.
Figure 1(a) shows a comparison of the behavior of x3 versus

time in the free system, i.e., when there is no inhibitory radi-
ation, and when inhibitory radiation is present. At I = 0.01,
the oscillation period T is increased and the peak amplitude
x3,p slightly decreased. Oscillations are suppressed at a critical
average radiation intensity IC = 0.011. Below this critical
intensity, the main consequences of increasing inhibitory radia-
tion intensity are the lengthening of the oscillation period and a
slight decrease of the peak amplitude, with no significant effect
on the shape of the curve. Figures 1(b)–1(d) illustrate these
effects over a range of intensities. In Figs. 1(b), 1(c) and 1(d),
t0 is the time at which the radiation feedback is turned on. The
graphs show no difference when inhibitory radiation is turned
on at time t0 = 0, the time at which the simulation is initiated,
or when the radiation is turned on at t0 = 397 s. This result is
unexpected, because transient behavior occurs during the first
cycle of x3. We selected the time at the second minimum of x3

(t = 397 s) because at this point regular periodic behavior is
already established in the free system [Fig. 1(a), I = 0 curve].
Even though there is no dependence on the time at which
radiation inhibition is turned on, henceforth unless specified
otherwise, we turn on inhibitory radiation at t0 = 397 + 2τ s.

Next, we introduce a time delay τ in the application of the
feedback and examine its effects. First we consider constant,
i.e., deterministic time delay. Figure 2 shows x3 versus time
at the critical inhibiting radiation for different values of τ .
As previously noted, oscillations are suppressed at the critical
radiation intensity in the absence of time delay. Interestingly,
the system recovers its oscillatory dynamics if the inhibiting
critical radiation is applied with a time delay. For τ � 2 s,
system oscillations are recovered with no significant change in
the x3 peak amplitude and time profile.
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FIG. 1. Effects of radiation intensity on system dynamics. (a) Plot of x3 time dependence for increased values of I . Critical radiation intensity
IC = 0.011 suppresses oscillatory dynamics. (b) Peak amplitude x3,p decreases linearly and (c) oscillation period T increases as inhibitory
radiation increases. (d) T and x3,p time profiles normalized to free system (no-inhibition) values. Values of maximum amplitude and period are
means averaged over several oscillatory cycles. Error bars (standard deviation) are barely noticeable in plots (b) and (c).
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FIG. 2. Time dependence of x3 at critical radiation intensity for
increasing time-delayed feedback. The introduction of τ � 2 s in
feedback, results in system recovery of oscillatory dynamics at critical
radiation intensity. The scale is the same for all plots.

We now consider how the system dynamics is modified
when inhibitory feedback is applied at a subcritical radiation
intensity with constant time delay. Figure 3 shows nine plots
of x3 versus time at I = 0.01 for increasing values of τ . These
plots correspond to the different characteristic time profiles
exhibited by x3 as a function of time-delayed feedback. The
time window for each plot was selected after the transients died
out and the system exhibited regular periodic behavior.

The figure shows significant changes in the x3 time profile
as τ increases. At τ = 40, 80, 110, 120, 200, and 240 s, we
observe more complex time profiles, which contain 2, 3, 4, 3, 2,
and 3 peaks per cycle, respectively. Interestingly, at τ = 250 s,

2000 2500 3000
10
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10
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10
−2

time (s)

x 3 (
M

)

τ = 10 s τ = 40 s τ = 80 s

τ = 110 s τ = 120 s τ = 200 s

τ = 240 s τ = 250 s τ = 300 s

FIG. 3. Plot of x3 vs. time as a function of increasing constant
time delay (shown in the top right side in seconds). As time delay
increases new peaks per cycle emerge, differentiate, and disappear.
Note that free system dynamics appears to be recovered at τ = 250 s,
compare with τ = 10 s and with Fig. 1(a) curve I = 0. Also note that
system behaves similarly at τ = 40 s and τ = 300 s.

the waveform of the system at τ � 10 s is recovered (which
essentially is the same of the free system), with one peak per
cycle. The oscillation period of 245 s is the same as that at
τ = 10 s (Fig. 9). The last plot at τ = 300 s resembles that at
τ = 40 s with a similar period. This could suggest that system
behavior is periodic in τ with a period of about 250 s. See
discussion of Fig. 9 on this issue.

Finally, we investigated the role of negative feedback
with stochastic time delay at a subcritical radiation intensity
(I = 0.01). Stochastic time delays with normal and Gumbel
probability distributions were used. In choosing the normal
and Gumbel distributions, one of our purposes was to compare
the effects of stochastic time delay from a symmetric and
a nonsymmetric distribution. The dispersions applied were
σ = 0.25, 1, 2, 4, 10, and 20 s for the normal distribution
and β = 0.25, 1, 2, 4, 10, and 20 s for the Gumbel distribution.
Figure 4 shows plots of x3 in the real [Figs. 4(a) and 4(b)] and
Fourier [Fig. 4(c)] spaces at τN = 100 s for the 13 conditions
of time-delayed feedback investigated: one constant and the
12 stochastic just described. Again, the frame has been chosen
after transients, once periodic behavior is established. In real
space, all plots exhibit strikingly similar dynamics. We observe
good matching between plots for dispersions of 4 s and
below for both distributions. At large dispersion, 10 and 20 s
[Fig. 4(b)], the only important difference between plots is in
frequency and/or phase. The first peaks, which occur at the
same location in Fourier space in most of the plots, correspond
to the major frequency component. The slight frequency
difference at low dispersion (�4 s), noticeable in real space,
is not evidenced in the peaks location in Fourier space, due
to the large scale of the plot. However, at large dispersion
(�10 s) the frequency is significantly larger, as evidenced by
the shift of the main peaks in the Fourier transform. Addition-
ally, a large set of lower amplitude frequency components is
apparent in the Fourier domain. Figure 5 shows an analogous
plot at τN = 200 s. Again, there is a remarkable match of
dynamic behavior in real space [Figs. 5(a) and 5(b)] for all
the conditions investigated. The most significant differences
occur in phase for large dispersions [Fig. 5(b)]. Primary and
several secondary frequency components exhibit impressive
agreement as shown in plots of the Fourier domain [Fig. 5(c)],
for all conditions.

The same trend of closely matching dynamics for the
entire set of time-delayed feedback conditions investigated
is observed for the complete interval of nominal time delay
explored (10 s � τN � 300 s). Time profile, frequency, and
mainly phase exhibit growing differences as the dispersion in
time delay increases. The similarity is particularly noticeable at
low time-delay dispersion (�4 s) with the striking exceptions
of τN = 110 and 240 s. Figure 6 shows the case of τN =
110 s. In real space [Fig. 6(a)], only plots 1, 2, 3, and 8
(constant, σ = 0.25 s, σ = 1 s, and β = 0.25 s) exhibit near-
perfect agreement in every aspect of their dynamics. These
plots present four maxima (one global and three local) per
oscillation cycle in contrast with three or two for the remaining
conditions with periodic behavior. The transition from four to
three maxima per oscillation occurs at σ = 2 s in the normal
distribution (plot 4). This plot appears to be aperiodic with
an apparently random peak sequence 4-3-3-4-3. An analogous
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FIG. 4. Real (a, b) and Fourier (c) space plots of x3 for all time-delay conditions investigated at τN = 100 s. Real-space profiles exhibit
closely similar dynamic behavior for all time delay conditions. Fourier analysis shows the concordance of the main and some secondary
frequency components roughly divided into small and large dispersions. Plots of x3 at small (a) and large (b) dispersion exhibit essentially equal
amplitude.

transition in the number of peaks per oscillation with aperiodic
behavior is observed in plot 9 (Gumbel distribution β = 1 s),
which has the peak sequence 3-4-4-4-3. In both cases (normal
and Gumbel distributions), two different runs with identical
simulation conditions but different random sequences of time
delays generated different peak sequences. One outcome of
the increase in time delay dispersion is the suppression of
secondary peaks in the real-space dynamics and a decrease in
oscillation period. This is revealed in Fourier space [Fig. 6(b)],
where plots for σ � 4 s and β � 2 s show the main frequency
component peaks shifted to the right.

To have a quantitative measure of the match between x3

waveforms subjected to feedback with stochastic and constant
time delays independent of frequency and phase, we define the

quantity qi as

qi =
∫ 1

0 |vi − u|dt∫ 1
0 udt

, i = 1,2, . . . 12, (12)

where u(t) = x3(T t + tM ) under constant time delay and
vi(t) = x3i(Tit + tMi) under stochastic time delay (the index
i specifies which form of stochastic time delay is used, see
Fig. 7), T (Ti) is the oscillation period at constant(stochastic)
time delay, and tM (tMi) is the time of the penultimate peak when
time delay is constant(stochastic). Equation (12) integrates the
absolute difference between frequency-normalized states x3

under stochastic and constant time delay, over one oscillation
cycle (the last simulated), with their phases matched, and

FIG. 5. Real (a, b) and Fourier (c) domains of x3 at τN = 200 s for all time delay conditions explored. As in the previous figure, the
agreement between all plots is remarkable. Plots of x3 at small (a) and large (b) dispersion exhibit essentially equal amplitude.
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FIG. 6. Plots of x3 in real (a) and Fourier (b) spaces for all conditions of time delay investigated at τN = 110 s. Periodicity is preserved in
curves 1, 2, 3, 5, and 7. Plots 1, 2, 3, and 5 still exhibit a close match while plot 7 shows a larger frequency, evidenced in the Fourier domain,
where the frequency component peaks are shifted to the right. Plots 4 and 6 appear to be aperiodic functions, though they still exhibit main
frequency components very similar to those of the periodic plots.

normalizes this integrated difference to the one-cycle integral
of u.

Figure 7 shows qi as a function of nominal time delay for all
conditions of stochastic time-delayed feedback investigated.
Remarkably, there is only one condition of nominal time delay,
τN = 240 s, at which qi is larger than 30%. This occurs solely
for the largest dispersions in time delay explored (�10 s). For
discussion purposes and based on the figure, we define low
(�4 s) and high (�10 s) time-delay dispersions for the behavior
of qi . At low dispersion qi is always less than 2% over the entire

range of nominal time delay, with two exceptions τN = 110
and 240 s. The case of τN = 110 s has been discussed in Fig. 6.
A similar situation occurs at τN = 240 s. Even in these cases, qi

is close to 10%. At large dispersion, qi increases moderately,
remaining below 30% with the exception mentioned above.
The largestqi values occur at the largest dispersion explored, 20
s, and the Gumbel distribution generally exhibits larger qi than
the normal distribution. There are three intervals that contain
large values of qi : τN = 100–110 s, τN = 130–180 s and τN =
240 s.
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FIG. 7. Plot of qi vs. τN shows that for all conditions of time delay studied qi remains below 30% for nearly all τN , except near τN = 240 s.
The inset shows a logarithmic plot of the same data.
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FIG. 8. Plot of x3 peak amplitude, x3,p as a function of τN . The plot shows a remarkable agreement between all time-delayed feedback
conditions. A logarithmic plot of these data is shown in the inset.

Finally, we present results for the signal x3 amplitude
(maxima) and period (frequency). Figure 8 shows a plot of
signal amplitude, x3,p, versus nominal time delay. The plot
compares constant and all stochastic time-delayed feedback
conditions. Besides small local differences, there is a surprising
match for the entire set of curves. The largest mismatch, which
occurs at τN = 240 s for β = 10 s, is less than 1.6% relative to
constant time delay. There are three intervals where noticeable
decrements in peak amplitude occur (including conditions at

constant and small dispersion stochastic time delay), at or
around τN = 110 s, τN = 140–190 s, and τN = 240–250 s.
In all three cases there is a decrease in the number of maxima
per oscillation cycle of the state x3 (see Fig. 3). The number
of peaks per cycle decreases from four to three peaks at
τN � 110 s, from three to two at τN = 190 s, and from three to
one at τN = 250 s (in this case the number of peaks increases
from two to three at τN = 240 s). Notice that secondary (local)
maxima fade or disappear as the dispersion increases, as seen
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FIG. 9. Oscillation period T as a function of τN . As in Fig. 8, the curves exhibit a remarkable match for all conditions of time-delayed
feedback applied.
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in Figs. 4 and 6. We emphasize that the intervals mentioned
roughly correspond to the peaks in Fig. 7.

Figure 9 shows the oscillation period as a function of
the nominal time delay. The signal exhibits four continuous
regions of increasing period as τN increases. In the boundary
between these regions there are intervals (three) which suggest
the existence of a discontinuity. These intervals loosely coin-
cide with (a) the regions where the x3 amplitude and number
of peaks per cycle decrease and with (b) the peaks of Figure 7,
i.e., at τN � 110 s, 140–190 s, and 240 s. Two regions of period
increase exhibit nonlinear behavior (first and fourth regions
from left to right) and two exhibit linear behavior (regions
two and three). We find four cases at which state x3 does not
exhibit periodic behavior, marked with infinite period in the
Figure (vertical lines). The cases are: (1) σ = 2 s, τN = 110 s;
(2) β = 1 s, τN = 110 s; (3) σ = 20 s, τN = 150 s; and (4) σ =
20 s, τN = 240 s. These cases lie within the intervals described.
As discussed in Fig. 3, the recovering of the oscillation period
and waveform at τN = 250 s suggests that system behavior is
periodic in time delay τ . However, we note in Fig. 9 that the
first region of the plots (10 s�τN � 60 s) grows faster and has a
larger first derivative than the last region (250 s �τN � 300 s).

IV. CONCLUSION

We have investigated the effect of time-delayed negative
feedback on a point photosensitive FKN oscillator by means
of simulated inhibitory radiation. We find that increasing the
radiation intensity with no time delay lengthens the oscillatory
period and lowers the peak amplitude of the oxidized photo-
sensitive catalyst concentration profile. At a critical intensity
of illumination, oscillatory dynamics is suppressed. These
observations can be attributed to the production of bromide,
which in turn inhibits the oxidation of [Ru(bpy)3]2+. If the
concentration of the inhibitor increases, the time needed for its
concentration to decrease to values compatible with oxidation
transitions will also increase; thus, the refractory time and
therefore the oscillation period should also increase. Similarly,
at increased inhibitor concentrations, the maximum concen-
tration of oxidized catalyst should decrease, as the available
activator is partially depleted relative to the inhibition-free
case. We also observe that the response of the system is the

same whether nondelayed feedback is initiated during transient
behavior or once periodic behavior is established, and that
introduction of delayed feedback allows recovery of oscillatory
behavior in the presence of a radiation level that suppresses
oscillation in the absence of delay.

Our main objective is to investigate the effects of incorpo-
rating a stochastic time delay in the feedback. We compare the
response of the FKN oscillator under constant versus stochastic
time-delayed feedback. Investigation with stochastic time de-
lay included two probability distributions, a symmetric normal
and a nonsymmetric Gumbel, with six values of parameter
dispersion for each. The FKN model exhibits a surprising
amplitude and frequency match for low dispersion (�4 s) in
the probability distribution of the time-delayed feedback over
a wide interval of time-delay values, which spanned more than
1.3 times the natural oscillation period of the free system (10
s�τN � 300 s). Additionally, there is a striking agreement in
the time profiles for the situations described. The amplitude and
period of x3 decrease or show a significant curvature change in
three intervals of the nominal time delay: (1) τN = 90–120 s,
(2) τN = 140–190 s, and (3) τN = 240–250 s. The time delay
(nominal) at which the transition occurs shifts toward lower
values as the dispersion in the probability distribution of
stochastic time delay increases. These regions closely coincide
with those at which qi exhibits bumps or peaks, i.e., when the
waveform of x3 under stochastic time delay feedback diverges
most from that under constant delay. In these parameter
regions, one secondary peak in the oscillation cycle of x3 fades
and disappears, and the signal exhibits aperiodic behavior in
some cases when time delay is stochastic.

Experimental implementation of this investigation will be
carried out in future work. This can be accomplished with
droplets of the BZ reaction prepared in the oscillatory regime
and subjected to an inhibitory light beam [11,61]. A PC
connected to a CCD video camera can evaluate, from droplet
image brightness, the concentration of oxidized catalyst in
the drops and tune accordingly the beam intensity with an
appropriate constant or stochastic time delay.
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