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Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potośı,
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Abstract

We present the results of an experiment with light microscopy performed
to capture the trajectories of live Nitzschia sp. diatoms. The time series
corresponding to the motility of this kind of cells along ninety-five circular-
like trajectories have been obtained and analyzed with the scaling statistical
method of detrended fluctuation analysis optimized via a wavelet transform.
In this way, we determined the Hurst parameters, in two orthogonal direc-
tions, which characterize the nature of the motion of live diatoms in light
microscopy experiments. We have found mean values of these directional
Hurst parameters between 0.70 and 0.63 with overall standard errors below
0.15. These numerical values give evidence that the motion of Nitzschia

sp. diatoms is of persistent type and suggest an active cell motility with a
kind of memory associated with long-range correlations on the path of their
trajectories. For the collected statistics, we also find that the values of the
Hurst exponents depend on the number of abrupt turns that occur in the
diatom trajectory and on the type of wavelet, although their mean values
do not change much.
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Preprint submitted to Elsevier October 14, 2014

http://arxiv.org/abs/1410.3135v1


Highlights:

• We determine Hurst parameters for digitally recorded 2D trajectories of a diatom species.

• The WT-DFA scaling method is used.

• We thus give statistical evidence for the persistent character of diatom motion.
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1. Introduction

Ubiquitous in aquatic habitats, diatoms are photosynthetic unicellular
microalgae that exist in both planktic and benthic lifestyles. The Nitzschia

species is a common genus of benthic diatoms that exhibits a paired mech-
anism of cell adhesion and gliding motility [1, 2, 3] (for a review see [4]).
It is known that for such diatoms their adhesion and gliding is dependent
on surface energies [5, 6], environmental chemical gradients [7] and growth
phase [8, 9], as well as of a photosynthetic response [10, 11, 12, 13]. Our
purpose in the following is to discern independent features of their motility
through a methodical examination of the dynamics of isolated cells in order
to minimize the effect of a non-homogenous environment.

At first sight and in the absence of external signals, the paths of mi-
grating cells appear to be driven by a diffusive Brownian motion. However,
in the experiment reported here, we focused on visualizing the individual
Nitzschia sp. trajectories with an automated tracking method developed in
our laboratory. According to our observations, the diatom dynamics is char-
acterized by alternating phases of directed gliding, changes of direction, and
intermittency. Individual cells and bodies which follow these dynamics have
a prevalent non-Gaussian diffusion [14]. Similar type of trajectories develop
a multimodal search behavior that has been modeled and analyzed exper-
imentally for different types of random motion [15], anomalous dynamics
[16], Lévy distributions [17], intermittency [18], collective motion [19], and
also by direct observation of the diatom kinematics in constrained regions
[20, 21]. In this work, our viewpoint is that trajectories with more complex
random walks, which are typical for cellular systems, can be approached by
the underlying scaling laws of fractional dynamics [17, 22].

Our experimental observations are limited to spatiotemporal scales of
hundreds of micrometers and seconds, which in general determine the com-
mon scales of motion of a single diatom. It is natural to think that the
time series of the trajectories provide a means to understand the long-term
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movement of the diatom cells, which in fractal dynamics can be character-
ized by the Hurst exponent [23] as a measure of spatiotemporal long-range
correlations [24]. In this paper, we apply a fractal procedure based on the
detrended fluctuation analysis (DFA) [25] to the time series of the trajecto-
ries of diatoms gliding freely. Based on the experimental results, we show
that the migration of the Nitzschia sp. diatoms is an active biological pro-
cess dependent on the memory skills of these cells under the experimental
conditions of our observations. The interpretation of the data as reveal-
ing persistent long-range correlations comes from the values of the Hurst
parameter that we have obtained from the scaling-fluctuation coefficient α
provided by the DFA.

Before proceeding, we mention that in the recent paper [26], a two-
dimensional trajectory analysis of individual diatom cells of Navicula sp.
has been performed, and on the other hand, a correlation analysis similar
to ours has been used in the area of completely sequenced genomes in [27].

2. Brief description of the light microscopy experiment

Nitzschia sp. cells have been isolated from biofilms in rock and soil sur-
faces that were submerged in a freshwater location near a thermoelectric
power plant in San Luis Potośı, Mexico in the summer of 2012. Axenic
subcultures were grown in Woods Hole medium at 25 ◦C under a 14 − 10
hrs light/dark cycles with cool white fluorescent light at the IM-UASLP Ge-
omicrobioloǵıa laboratory. This method for preparing Woods Hole culture
media from freshwater algae and cyanoprokaryota has been adapted from
the book chapter of Nichols [28].

Cells were inoculated and grown in either 24 well cell culture plates made
of polystyrene (Costar; Corning Incorporated, catalog no. 3524, Corning,
New York, NY) or in 1-L conical flasks with continuous oxygen supply.
Cultures grown in flasks were used throughout the experiments or otherwise
noted and they contained Nitzschia sp. diatoms that were able to perform
and sustain both cell adhesion and diatom cell motility. The diatoms have
been slowly inoculated by capillarity inside a flow cell which immediately was
wax-sealed and placed into the optical microscope mounting. The sealing
enabled us to observe samples over several hours without internal currents
that may perturb the assays. However, we noticed slightly higher motility
rates when the samples were set for an incubation time of 90 minutes after
flowing diatoms into the flow cell.
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The flow cell was placed on the specimen holder of an upright micro-
scope to observe gliding Nitzschia sp. diatoms which are about 30 µm in
size. Several diatoms can be recorded simultaneously in a single run, in our
case, there were 2− 17 diatoms within each field of view of the microscope.
After observing the sample for several seconds, diatoms gliding at approx-
imately 5 µm/s were captured in videos at a rate of 26 fps. For analysis,
video frames were digitized with VirtualDUB 1.9.11 as uncompressed avi

files, and each frame was exported as text images in ImageJ 1.46 (National
Institute of Health). For each sample, all data were collected within 2 h
after preparation.

The object tracking was done with an in-house LabVIEW routine (Na-
tional Instruments, Austin,TX). The digital video processing and tracking
algorithm have been adapted by us to the experimental conditions of our
lab and will be described elsewhere [29]. Briefly, the analysis of the two
dimensional diatom trajectories starts by a tracking algorithm that deter-
mines the in-plane center-of-mass position of a single diatom and stores it
for each video frame [30]. Raw positional data are subject to drift due to vi-
brations of the microscope and tracking errors. Thus, we applied a high pass
filter and a moving average [31] to correct for the drift, then we performed
the scaling analysis to the drift-corrected time series. The trajectories were
recorded for 5 minutes and only a few of them lasted less in the case of
proximity to other diatoms which challenged the tracking routine.

The trajectories of one hundred forty-one single diatoms were captured
in video. Ninety-five (68%) were circular-like and rather smooth with only
a few derailments, while the other forty-four looked like failed attempts to
achieve the circular-like motion and many of them still presented arcs of
circles but in a more zigzag manner. For the WT-DFA analysis, we focused
only on the ninety-five circular-like trajectories which looked as the most
undisturbed, i.e., almost stationary for observations by light microscopy.

3. Time series of Nitzschia sp. diatom trajectories

3.1. Generalities

One frequent way of collecting experimental data is in the form of se-
quences of values at regularly spaced intervals in time. These sequences are
called time series and provide useful information for further analysis and
interpretation of the physical system that generated them.
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The stochastic nature of long-range dependence in a time series has
been modeled by two interrelated processes: the fractional Brownian mo-

tion (fBm) and the fractional Gaussian noise (fGn). The fBm are Gaussian
stochastic processes of zero mean, non-stationary and self-similar, which are
indexed by the Hurst exponent H ∈ (0, 1), which in this work will be de-
termined from the so-called scaling-fluctuation coefficient α; see below. The
increments of fBm are stationary and are considered the basic example of
an fGn process. Thus, fBm and fGn are invertible over integration and dif-
ferentiation, respectively. An important feature of fBm is the presence of
long-term correlations between the past increments and future increments.
In a general sense, this indicates, on average, that the fluctuations on one
time scale are statistically similar to the fluctuations on other time scales.
The Fourier analysis is a well established and suitable tool for analyzing
stationary time series, whose statistical properties are not time dependent.
In fact, the Fourier technique decomposes a signal into harmonic compo-
nents because the basis functions are trigonometric functions. However, in
recent times, it became evident that many time series are not stationary
in the sense that their mean properties change in time. An alternative to
the Fourier approach to deal with non-stationary time series is the wavelet
transform (WT) [32, 33, 34]. The WT has been introduced and developed
to study a large class of phenomena such as image processing, data com-
pression, chaos, fractals, among others. The basis functions of the WT,
the wavelets, have the key property of localization both in time (or space)
and frequency, contrary to what happens with trigonometric functions. This
wavelet property allows a more appropriate decomposition of non-stationary
signals and their wavelet processing became a standard tool in the last two
decades. However, to get the dynamics that produces a non-stationary sig-
nal it is crucial that in the corresponding time series a correct separation of
the fluctuations from the average behavior, or trend, should be performed.
Therefore, people had to implement novel statistical methods of detrending
the data that should be combined with the wavelet analysis. At the present
time, there are several such methods and techniques that have been devel-
oped to analyze non-stationary time series that display singular behavior or
multiple scaling behavior of multifractal type.

3.2. DFA Algorithm

Originally proposed in 1994 by Peng et al [25], the DFA method can
be applied to both fBm and fGn. Its advantage is that it outperforms over
other more conventional techniques in quantifying the correlation proper-
ties of intrinsic self-similarity embedded in a seemingly nonstationary time
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series [25, 35, 36]. In addition, it also avoids the spurious detection of ap-
parent self-similarity, which may be an artifact of extrinsic trends. With
the aim to have a very acceptable algorithm for the DFA method with much
less computational cost and better accuracy, in 2005 Manimaran et al [37]
proposed to combine the orthogonal discrete wavelet transform with the
DFA procedure. Based on this, Murgúıa et al [38] implemented and used
this approach to investigate the multifractal behavior of the time series of
the row-sum signals of certain cellular automata rules [39]. This method
is known under the acronym WT-DFA and we use it for the diatom data
because of the experience gained with its usage in our previous papers. The
WT-DFA basically exploits the fact that the low-pass version resembles the
original data in an “averaged” manner in different resolutions. Instead of a
polynomial fit, we consider the different versions of the low-pass coefficients
to calculate the “local” trend. The numerical analysis of a time series x(tk),
where tk = k∆t and k = 1, 2, . . . , N , within the framework of the WT-DFA
procedure is performed in the following steps:

1. Determine the profile Y (k) =
∑k

i=1(x(ti) − 〈x〉) of the time series,
which is the cumulative sum of the series from which the series mean
value is subtracted.

2. Compute the fast wavelet transform (FWT), i.e., the multilevel wavelet
decomposition of the profile. For each level m, we get the fluctu-
ations of the Y (k) by subtracting the “local” trend of the Y data,
i.e., ∆Y (k;m) = Y (k) − Ỹ (k;m), where Ỹ (k;m) is the reconstructed
profile after removal of successive details coefficients at each level m.
These fluctuations at level m are subdivided into windows, i.e., into
Ms = int(N/s) non-overlapping segments of length s. This division is
performed starting from both the beginning and the end of the fluctu-
ations series (i.e., there are 2Ms segments). Next, one calculates the
local variances associated to each window ν

F 2(ν, s;m) = var∆Y ((ν − 1)s + j;m), (1)

j = 1, ..., s , ν = 1, ..., 2Ms , Ms = int(N/s) .

3. Calculate the fluctuation function defined as

F2(s;m) =

(

1

2Ms

2Ms
∑

ν=1

|F 2(ν, s;m)|

)1/2

. (2)

4. Repeat the above procedure for different (a broad range of) segment
lengths s.
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If the fluctuation function F2(s;m) displays a power law scaling

F2(s;m) ∼ sα, (3)

then the analyzed time series have a fractal scaling behavior, with scaling-
fluctuation exponent α. This exponent can be found as the slope of the
line expressing (3) in the logF2 versus log s plot, and it is a measure for the
degree of correlation in the time series. If α = 0.5 there is no correlation and
the signal is uncorrelated (white noise). On the other hand, if 0 < α < 0.5
the signal presents an anticorrelated behavior (alternation between small and
large values), and the time series is said to be anti-persistent; if 0.5 < α < 1,
thus the correlations in the time series are persistent, where large values in
the series of data are more probably to appear after large values, and vice
versa. The values α = 1 and α = 1.5 correspond to 1/f -noise and Brownian
motion, respectively. This exponent can be considered as a generalization of
the Hurst exponent. For stationary time series, α is identical to the Hurst
exponent H, whereas for non-stationary time series α = H +1, [40, 35, 36].
This scaling-fluctuation exponent is also related to other exponents, such
as the scaling exponent β of the Fourier spectral density of the signal (the
power spectrum) by α = (1 + β)/2.

For the fBm, the relationship is β = 2H + 1, where 1 < β < 3, since
H lies between 0 and 1 and classical Brownian motion is a special case
corresponding to β = 2. On the other hand, for the fGn, β = 2α − 1, and
β = 2H − 1, with −1 < β < 1, for example the classical white stationary
Gaussian noise is a special case with β = 0 [40, 41].

3.3. Hurst exponents of time series of Nitzschia sp. diatom trajectories

recorded for 5 minutes

We now report our WT-DFA results for the recorded circular-like Nitzschia
sp. trajectories which looked as the most stable and therefore as the most
natural for these diatoms under the experimental conditions of light mi-
croscopy. We used the db-3 and db-4 wavelet functions belonging to the
Daubechies orthogonal family because this family has a number of desirable
properties, such as orthogonality, approximation quality, and numerical sta-
bility [33, 32, 37]. In addition, the WT-DFA algorithm with the Daubechies
wavelet family is memory efficient and is reversible, whereas other wavelet
bases have a slightly higher computational overhead and are conceptually
more complex. The results of this scaling method for the correlation prop-
erties of the drift-corrected time series are presented in two selected figures,
Figs. 1 and 2, not to burden the paper with too many plots. Since we wish
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to accurately estimate the Hurst parameters in two orthogonal directions,
which for circular-like trajectories display (quasi)periodic patterns, we elimi-
nate this periodic trend by means of the singular value decomposition (SVD)
method, which is a common technique used in the literature for this purpose
[42]. We implemented the SVD algorithm based on [42] using a fixed value
of the dimensionality parameter, while the number of frequency components
was chosen the same as the order of the employed wavelet. In this way, we
achieved a satisfactory numerical stability of the Hurst mean values and
on the other hand it is natural to think that for quasi-circular trajectories
more harmonics get involved. The SVD filtering has been applied prior to
the WT-DFA estimation because it is long known that the DFA algorithms
cannot deal with periodic trends [43].

To investigate any dependence of the H exponents with the number of
abrupt turns in a diatom trajectory and with the type of wavelets, a first
statistical evaluation of normality is provided in Table 1 which was obtained
with the Shapiro-Wilk normality test that we performed using the package
SPSS v.20 (IBM, Armonk, NY).

Table 1: The mean values µ and the variances σ for the distributions of time lags between
successive abrupt turns and the Hurst exponents of the global statistics in both directions
for two different Daubechies wavelets. The output p-values of the Shapiro-Wilk normality
test for these distributions are displayed in the last column.

Distribution N µ σ p

∆t 488 26.094 s 0.038 s 0.001
H (db-3) 190 0.718 0.123 0.001
H (db-4) 190 0.659 0.145 0.001

Each trajectory displays none or several abrupt turns whenever the di-
atom changes its direction of motion with corresponding elapsed times be-
tween the turns ∆t0, ∆t1, ∆t2, . . . , ∆tn. To determine each ∆ti, the time
series and the video recorded trajectory were used in synchrony for all tra-
jectories.

The p-values obtained by the Shapiro-Wilk normality test indicate that
the ∆t distribution and the global H distributions are not normal distribu-
tions. For Hurst statistics of individual directions similar results have been
obtained. This non-normality feature may be due to some bias effects or
to the fact that all the statistical quantities are estimated from each ran-
dom single-particle trajectory for which the estimators are not necessarily
Gaussian even in the limit of very large number of collected data. This is
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well known in the literature of single-particle tracking measurements for the
similar case of the estimators of the diffusion coefficient of Brownian or frac-
tional Brownian motion [44, 45]. Future advanced experiments may shed
more light on the origin of this non-normality.

Figure 3 shows the distribution of ∆t and its normal Q-Q plot. The
normal Q-Q plot compares how the observed values of ∆t distribute along
the expected normal and confirms, in this case, that the time lags between
successive abrupt turns deviate from a normal distribution. This kind of
distribution is characteristic of biological Poisson processes suggesting that
the time condition that triggers an abrupt turn in Nitzschia sp. is a stochas-
tic memoryless process. The time constant of the process in the case of this
diatom is 19.626 s.

The distributions of the Hurst exponents in the two orthogonal direc-
tions corresponding to the circular-like trajectories after eliminating sev-
eral outliers are presented in the histograms of Figs. 4 and 5 for the db-3
and db-4 wavelets, respectively. The mean values of these distributions are
Hx = 0.7031 ± 0.0964 and Hy = 0.6985 ± 0.1063 for the db-3 wavelets and
Hx = 0.6314±0.1153 and Hy = 0.6521±0.1244 in the case of db-4 wavelets.
We also performed calculations with db-5 and db-6 wavelets and noticed sta-
ble results, such as Hx = 0.6973 ± 0.0998 and Hy = 0.7007 ± 0.1071 in the
first case and Hx = 0.6884±0.1116 and Hy = 0.6952±0.1154 in the second
case. However, all these stable mean values have been obtained by increas-
ing the number p of frequency components in the SVD method from 3 to 4,
5 and 6 for db-3, db-4, db-5, and db-6 wavelets, respectively, while keeping
the SVD embedding dimension parameter fixed (d = 110).

Moreover, four levels of abrupt turns, namely 0-4, 5-9, 10-14, and 15-or-
more, are defined to group trajectories by their number of abrupt turns, i.e.,
the level of turns 0-4 is the set of trajectories with a number of abrupt turns
ranging from zero to four and so forth, and we applied an ANOVA two-way
analysis of variance for two factors: level of turns and wavelet choice. The
results of this analysis are summarized in Table 2.

The resulting set of f3,3 = 14.2546 and p = 0.0279 is not statistically
significant. Therefore, it fails to reject the chosen null hypothesis that H
does not depend on the level of turns. In addition, f1,3 = 19.7778 and
p = 0.0212 are not statistically significant either, and therefore, does not
reject the null hypothesis that the global H distribution does not depend
on the choice of wavelet. For individual H distributions similar results are
obtained.

To quantify the difference between the wavelet of choice used in this
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Table 2: The two-way ANOVA calculated values. f critical corresponds to a level of
significance of 5%.

SS df f p f critical
Level of turns 0.0182 3 14.2546 0.0279 9.2766
Wavelet choice 0.0084 1 19.7778 0.0212 10.1280

Error 0.0013 3
Total 0.0279 7

work a Wilcoxon-Mann-Whitney U test was performed, which is known to
be more efficient than the t-test [46]. We found a U value of 11909.000
and a z-score of −5.736 (p = 0.001), which is statistically significant at a
level of significance of 5%, meaning that one wavelet ranks higher than the
other. For our data, the assigned mean ranks for the total statistics in both
directions are of 222.820 and 158.180 for db-3 and db-4, respectively. Similar
results are obtained for the individual x and y statistics.

4. Conclusions

We have applied the WT-DFA scaling analysis to the diatom motion us-
ing the time series of the Nitzschia sp. diatom trajectories digitally recorded
for 5 minutes in observations by light microscopy. From this analysis, we
have determined the values of the Hurst exponents corresponding to 95 time
series of circular-like trajectories of this diatom species. After deleting a few
outliers, the mean values of the Hurst exponents in the two orthogonal di-
rections are between 0.70 and 0.63 with standard errors below 0.15 which
point to a persistent type of motion. These values indicate some sort of
memory-type effects but more experiments of this type with better statis-
tics are needed to quantify and calibrate the motion of different diatom
species in terms of scaling parameters.

The values of the Hurst exponents depend on the number of abrupt turns
observed in a Nitzschia sp. trajectory with a characteristic time of 19.626 s
and also on the type of wavelet. To settle the issue of these dependencies a
bigger amount of experimental data is needed. We also confirmed with the
Wilcoxon-Mann-Whitney U test that the choice of order of the Daubechies
orthogonal wavelets, db-3 and db-4, influences the exponent values, getting
higher ranks in the first case. The results obtained with the db-3 wavelets
can be judged as more reliable because these wavelets have a smaller support
size which increases their ability to display the non-smooth characteristics
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of the diatom trajectories and at the same time they have an acceptable
number of vanishing moments required to improve the multiresolution anal-
ysis for the smoother part of the trajectory signals.
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The figures of the paper
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Figure 1: Diatom trajectory (a), the measured x and y time series (b), the same time
series after applying the SVD method of eliminating the periodic trend has been applied
(c,d), and bilogarithmic plots of F2,x (e,f) and F2,y (g,h) for db-3 and db-4 wavelets,
respectively. The Hurst exponents of this trajectory are Hx = 0.6910 and Hy = 0.6485 in
the case of db-3 wavelet and Hx = 0.5919 and Hy = 0.5401 in the case of db-4 wavelets.
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Figure 2: Same as in the previous caption but for another trajectory. The Hurst exponents
are Hx = 0.6796 and Hy = 0.5890 for db-3 wavelets and Hx = 0.6065 and Hy = 0.6701
for db-4 wavelets.
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Figure 4: The distribution of the Hurst exponents of 90 diatom trajectories obtained with
the db-3 wavelets in (a) x-direction, (b) y-direction, and (c) both directions together. (d)
The dependence of the global Hurst exponents with the number of turns.
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Figure 5: The same as in the previous figure but for 91 trajectories in the case of db-4
wavelets.
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