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Reid’s mth-order generalized Ermakov systems of nonlinear coupling constant α are equivalent to
an integrable Emden-Fowler equation. The standard Ermakov-Lewis invariant is discussed from this
perspective, and a closed formula for the invariant is obtained for the higher-order Reid systems
(m ≥ 3). We also discuss the parametric solutions of these systems of equations through the
integration of the Emden-Fowler equation and present an example of a dynamical system for which
the invariant is equivalent to the total energy.
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Highlights: Reid systems of order m are connected to EmdenFowler equations. General expressions for the

Ermakov-Lewis invariants both form = 2 and m ≥ 3 are obtained. Parametric solutions of the Emden-Fowler

equations related to Reid systems are obtained.

For the large class of parametric oscillators (with time-dependent frequencies) and their vast applications, the
importance of the Ermakov-Pinney equation with inverse cubic nonlinearity as a helpful auxiliary equation is well
established in the literature. The first works in this area have been published in Danish [1] and Russian [2] by two
mathematicians of the 19th century and available in English only since the beginning of the 21st century. In 1880,
Ermakov discussed the following pair of equations (subindices of one and two letters denote first and second-order
derivatives with respect to the independent variable, unless otherwise specified):

{

qtt + ω2(t)q = 0 ,
q̃tt + ω2(t)q̃ = αq̃−3 .

(1)

The interesting fact concerning (1) is that the dynamical systems with equations of motion given by the linear
equation, and therefore of Hamiltonian H = 1

2

(

p2 + ω2(t)q2
)

, where p = qt, are further endowed with the so-called
Ermakov-Lewis (EL) invariant which depends on the nonlinear constant α and is constructed from any solutions q
and q̃ of (1) as follows:

I = α

(

q

q̃

)2

+ (q̃qt − qq̃t)
2 . (2)

If α = 0 then I = W 2, where W is the Wronskian of two linearly independent solutions of the linear equation. Thus,
mathematically, the invariant I is closely related to the Wronskian. Modern research related to this invariant started
in the second half of the 1960s [3] when Lewis rediscovered it in a completely different theoretical framework and
also provided the first application in quantum mechanics upon turning it into a Hermitian dynamical operator by
considering q and p as operators but keeping q̃ as a c-number and showing that it was a constant of motion and thus
possessing time-independent eigenvalues. For a recent general discussion of dynamical invariants in the quantum-
mechanical framework we recommend Section 2 in [4]. In the following, we focus only on the classical aspects of
the problem. For one-dimensional time-dependent classical Hamiltonians with more general potentials other than
1
2ω

2(t)q2, we mention the general result of Lewis and Leach who obtained all potentials that admit an invariant
quadratic in p and who determined all those invariants [5]. Besides, they considered the possibility to find more
general invariants that are polynomials in p of higher degree than quadratic.
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Much less attention has been paid in the literature to the higher degree nonlinear generalization of Ermakov systems
of equations introduced by Reid in 1971 [6]:

{

qtt + ω2(t)q = 0
q̃tt + ω2(t)q̃ = α(q1q2)

m−2q̃1−2m , α 6= 0 , m 6= 0, 1, m ∈ N ,
(3)

where q1 and q2 are particular linear independent solutions of the homogeneous linear equation of system (3). The
standard Ermakov systems are included as the particular case m = 2.
Reid has shown that the following nonlinear superposition

q̃(t) =
(

qm1 +
α

(m− 1)W 2
qm2

)
1

m

(4)

is a solution to the nonlinear equation in (3). In the particular case m = 2, Reid’s formula (4) reduces to Pinney’s
formula corresponding to Ermakov’s systems [7]

q̃
Pin

(t) =
(

q21 +
α

W 2
q22

)
1

2

. (5)

In this Letter, our main goal is to get general formulas for the EL invariant both in the standard m = 2 case and
the higher order cases m > 2 by using the integration of the corresponding Emden-Fowler equations. For that, we
apply to (3) Ermakov’s idea [2] of eliminating ω2(t), which leads to:

d

dt
(qq̃t − q̃qt) = α(q1q2)

m−2q̃1−2mq . (6)

Multiplying both sides by qq̃t − q̃qt = −q̃2 d
dt

(

q
q̃

)

we get

d

dt
(qq̃t − q̃qt)

2 = −α(q1q2)
m−2q̃4−2m d

dt

(q

q̃

)2

. (7)

Since q1 and q2 are particular solutions of Wronskian W , then let us use

q2 = Wq1

∫

1

q21
dt (8)

which is the reduction of order formula. Substituting this into (7) it yields

d

dt
(qq̃t − q̃qt)

2 = −αWm−2

m− 1

(

∫

dt

q2

)m−2 d

dt

(q2

q̃2

)m−1

, (9)

where the subindex of q1 has been dropped.
Let us introduce a transformation defined by

r̃ =
q̃

q
, (10)

Y =

∫

dt

q2
(11)

and notice that the Wronskian built from the solutions q and q̃ is the r̃Y derivative:

qq̃t − q̃qt = q2
dr̃

dt
=

dr̃

dY
= r̃Y . (12)

This is a very useful relationship that helps us to obtain the corresponding Emden-Fowler equation. When we
substitute all the above into (9) we obtain

d

dt

( dr̃

dY

)2

= −αWm−2

m− 1
Y m−2 d

dt
r̃2−2m. (13)

Now, we multiply both sides of (13) by r̃2 = dt
dY

and get

d

dY

( dr̃

dY

)2

= −αWm−2

m− 1
Y m−2 d

dY
r̃2−2m, (14)
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which simplifies to the following Emden-Fowler (EF) equation

r̃Y Y = αWm−2Y m−2r̃1−2m (15)

that can be considered as equivalent to the initial Reid system of order m.
According to Polyanin [8], a particular solution is

r̃
Pol

= (−4αWm−2)
1

2m

√
Y . (16)

The integrability of the EF equation (15) resides in the particular powers of r̃ and Y , and the general solution can be
written in parametric form. The fact that Reid’s systems are integrable plays an important role in the integrability
of (15).

To proceed further, we separate the well-studied case m = 2 from the higher-order cases m ≥ 3.

Case 1. m = 2. In this case, (15) reduces to

r̃Y Y = αr̃−3. (17)

To obtain the EL invariant, let us multiply (17) by r̃Y and integrate once to get

1

2
(r̃Y )

2 = −1

2
αr̃−2 + C, (18)

which after identifying C ≡ I, where I is the EL invariant, yields

I(r̃, r̃Y ) =
1

2

[

(r̃Y )
2 + αr̃−2

]

. (19)

Furthermore, it is easy to show that I is a constant given by the following formula

I =
1

2

(

a2α+ b2W 2
)

, (20)

where a and b are the superposition constants of the general solution q.
Indeed, (19) can be written as

I(t) =
1

2

[

(qq̃t − q̃qt)
2 + α

( q̃

q

)−2
]

. (21)

Then, using the general solution q as the linear superposition q = aq1 + bq2 and

q̃(t) =

√

q21 +
α

W 2
q22 (22)

in (21), one gets (20). Thus, given the initial conditions, the constant value of the Wronskian of the two linear
independent solutions, and the nonlinearity parameter, the EL invariant can be calculated from the general formula
(20), which, to the best of our knowledge, was not previously mentioned in the literature. Notice that from the strict
mathematical viewpoint this invariant can be zero if the superposition constants are chosen such that b

a
= ± 1

W

√
−α.

A lemma in the literature states that the EL invariant is positive semidefinite [9]. According to our result this implies
the following condition on the nonlinear coupling α > −(bW/a)2.

We turn now to the solutions of equation (17). For this, we decode the equation as the nonlinear Ermakov equation
in the particular case of zero frequency ω(Y ) = 0 that leads further to solutions of (3) in known forms. Since (17) is
an Ermakov equation, a particular solution can be written in terms of the two linearly independent solutions r1 = 1
and r2 = Y of the homogeneous equation rY Y = 0 using the Pinney formula [7]

r̃
Pin

(Y ) =

√

r21 +
α

W 2
r22 ≡

√

1 + αY 2 . (23)

But knowledge of r̃(Y ) implies getting q̃ from

q̃
Pin

= q1r̃Pin
(Y ) ≡

√

q21 + αq22 , (24)



4

which is the typical Pinney formula when W = 1.
On the other hand, Polyanin’s particular solution (16) corresponds to:

q̃
Pol

= q1r̃Pol
(Y ) = (−α)

1

4

√

2q1q2 . (25)

Of course, the particular solutions (24) and (25) can be obtained from the general solution of (17). Suppose we
consider now the solutions r1 = 1 and r2 = Y of Wronskian W = 1 of the homogeneous equation rY Y = 0. Then, it
is known that the general Pinney solution of (17) can be written as follows [10, 11]:

r̃(Y ) =
√

α1 + α2Y 2 + 2α3Y , (26)

with the α constants fulfilling the condition α1α2 − α2
3 = α

W 2 . One can easily see that r̃
Pin

(Y ) and r̃
Pol

(Y ) are just
particular cases of r̃(Y ) in (26).

Case 2. When m > 2, to find the invariant we will use two methods.

(i) Using the substitutions r̃(Y ) = Q̃(τ)√
τ

and τ = 1
Y

in equation (15), one gets

τ2Q̃ττ + τQ̃τ − 1

4
Q̃ = αWm−2Q̃1−2m . (27)

To get rid of the damping term, one can use Euler’s exponential change of independent variable τ = eη that leads to
the following Reid equation of constant frequency ω = i

2

Q̃ηη −
1

4
Q̃ = αWm−2Q̃1−2m . (28)

Its solution can be written using Reid’s formula (4)

Q̃(η) =
(

e+
mη
2 +

αWm−2

m− 1
e−

mη
2

)
1

m

, (29)

where the exponential functions are the linear independent solutions of WronskianW = −1 of the hyperbolic oscillator
equation

Qηη −
1

4
Q = 0 . (30)

Multiplying (28) by Q̃η and integrating, one immediately gets

Q̃2
η =

1

4
Q̃2 − αWm−2

m− 1
Q̃2−2m + 2I ≡ P (Q̃) , (31)

which provides the general expression for the Ermakov-Lewis invariant for m > 2:

I(Q̃, Q̃η) =
1

2

[

Q̃2
η +

αWm−2

m− 1
Q̃2−2m − 1

4
Q̃2

]

. (32)

Equation (32) can be also written as a function of corresponding Reid’s r̃’s and r̃Y ’s as follows:

I(r̃, r̃Y ) =
1

2

[

Y (r̃Y )
2 − r̃Y r̃ +

αWm−2

m− 1

(

Y

r̃2

)m−1 ]

. (33)

In terms of q, q̃ the above becomes

I(t) =
1

2

[

(qq̃t − q̃qt)
2

∫

dt

q2
− q̃

q
(qq̃t − q̃qt) +

αWm−2

m− 1

(q2

q̃2

∫

dt

q2

)m−1
]

, (34)

which is the higher order equivalent of (21).
If in (33) we now substitute the Polyanin particular solution we find the following constant value for the Reid

invariant for all m ≥ 3:

I = − (−4αWm−2)
1

m

8

m

m− 1
. (35)
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We now address the issue of finding the Reid solution (4) from the solution of the EF equation (15) for m > 2.
Formula (31) is separable as follows:

∫ ±dQ̃
√

P (Q̃)
=

∫

dη = η − η0 = ln |τ | − ln |τ0| = ln | τ
τ0
| , (36)

which allows us to introduce the exponential parametric form of the Emden-Fowler solutions:

τ(Q̃) = |τ0|e±
∫

Q̃ Θ(Q̃′)dQ̃′

(37)

y(Q̃) =
Q̃

√

|τ0|
e∓

1

2

∫
Q̃ Θ(Q̃′)dQ̃′

, (38)

where Θ(Q̃) = P− 1

2 (Q̃). In our case the solutions are:

Y (Q̃) =
1

|τ0|
e∓

∫
Q̃
(

1

4
Q̃′2−αWm−2

m−1
Q̃′2−2m+2I

)

−
1

2
dQ̃′

(39)

r̃(Q̃) =
Q̃

√

|τ0|
e∓

1

2

∫
Q̃
(

1

4
Q̃′2−αWm−2

m−1
Q̃′2−2m+2I

)

−
1

2
dQ̃′

, (40)

where τ0 is a constant of integration. For example, in the m = 3 case one gets I = 3
8

(

αW
2

)
1

3 , and then the parametric
solutions to the EF equation are as follows:

Y (Q̃) =
1

|τ0|
e∓

∫
Q̃
(

1

4
Q̃′2−αW

2
Q̃′−4+ 3

4 (
αW
2 )

1

3

)

−
1

2
dQ̃′

(41)

r̃(Q̃) =
Q̃

√

|τ0|
e∓

∫
Q̃
(

1

4
Q̃′2−αW

2
Q̃′−4+ 3

4 (
αW
2 )

1

3

)

−
1

2
dQ̃′

. (42)

From (39) and (40) it follows that r̃ and Y for higher order Reid systems are connected by

r̃ = Q̃
√
Y (43)

and therefore the parametric solutions differ from the particular Polyanin solution through the function Q̃ that replaces
the constant factor (−4αWm−2)

1

2m . Moreover, using eη = τ = 1
Y

in (29) one gets

Q̃(Y ) =

(

Y −m
2 +

αWm−2

m− 1
Y

m
2

)
1

m

. (44)

Then (43) gives

q̃ = Q̃q1
√
Y = Q̃

√

q1q2
W

=

(

Y −m
2 +

αWm−2

m− 1
Y

m
2

)

1

m
√

q1q2
W

. (45)

Since Y = q2
Wq1

, we obtain the final result

q̃ =
(

qm1 +
α

(m− 1)W 2
qm2

)
1

m

, (46)

which is Reid’s formula for solution q̃.

(ii) One can also solve the full Emden-Fowler equation by the reduction of order method using both dependent-
independent variable substitutions

z =
( Y

r̃2

)m

, (47)

u = Y
r̃Y
r̃

(48)



6

that lead to a first order Abel equation

(

u− 1

2

)

uz =
u2

2mz
− u

2mz
− αWm−2

2m
. (49)

Now, if we let u− 1
2 = 1

v
we obtain the Bernoulli equation

vz = − 1

2mz
v +

1 + 4αWm−2z

8mz
v3 . (50)

This can be linearized by ϕ = v−2 to give

ϕz −
1

mz
ϕ = −αWm−2

m
− 1

4mz
. (51)

The solution to (51) is

ϕ(z) =
αWm−2

1−m
z + Iz

1

m +
1

4
, (52)

where I is the integration constant which is equivalent to the EL invariant. Now we use back all the substitutions
and solve for I to obtain the same as equation (33) obtained previously.

Lagrangian and Hamiltonian functions. The inverse transformation of independent variable τ = 1
Y

turns the EF
equation (15) to the EF in the normal form

τ ¨̃r + 2 ˙̃r = αWm−2τ−m−1r̃1−2m , (53)

where the overdot notation for the derivative with respect to τ is used. Djukic showed that the following Lagrangean
[12, 13]

L(r̃, ˙̃r) =
τ−2

2

(

τ4 ˙̃r2 − αWm−2

m− 1
τ−(m−2)r̃2−2m

)

(54)

generates (53) from the variational formulation of Euler-Lagrange equations d
dτ

(

∂Lm

∂ ˙̃r

)

− ∂Lm

∂r̃
= 0, and one can build

the Hamiltonian from H(p, r̃) = ∂Lm

∂ ˙̃r
˙̃r − Lm = p ˙̃r − Lm, where p = τ2 ˙̃r, which gives

H(p, r̃) =
τ−2

2

(

p
2 +

αWm−2

m− 1
τ−(m−2)r̃2−2m

)

. (55)

In terms of the original variables r̃(Y ) and r̃Y = −τ2 ˙̃r = −p, the Lagrangian and Hamiltonian functions have the
more symmetric forms:

L(r̃, r̃Y ) =
Y 2

2

(

r̃2Y − αWm−2

m− 1
Y m−2r̃2−2m

)

, (56)

H(p, r̃) =
Y 2

2

(

p
2 +

αWm−2

m− 1
Y m−2r̃2−2m

)

. (57)

The integral of motion (33) is obtained using the change of dependent variable r̃(Y ) = r̃(τ)√
τ
. In terms of the

canonical variables of the Lagrangian L, the invariant (33) becomes

I(r̃, ˙̃r) = τ3 ˙̃r2 + τ2 ˙̃rr̃ +
αWm−2

m− 1
τ1−mr̃2−2m . (58)

This form of the EL invariant has been obtained by Djukic, and also generalized by Rosenau [14], but in different
notations and context and without calling it as such.
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One can also ask what kind of integral of motion is the higher-order EL invariant. If one writes down the Hamiltonian
of the nonlinear Reid oscillator

HR(p̃, q̃) =
1

2
[p̃2 + ω2(t)q̃2 + α

(q2WY )m−2

m− 1
q̃2(1−m)] , (59)

one can show that the total time derivative of the invariant as given in (34) is zero:

dI

dt
=

∂I

∂t
+ {I,HR} =

∂I

∂t
+

∂I

∂q̃

∂HR

∂p̃
− ∂I

∂p̃

∂HR

∂q̃
≡ 0 . (60)

However, the situation is different from the linear parametric oscillators because now both the EL invariant and the
Hamiltonian depend on the nonlinear coupling constant. It can be shown, see also the example that follows, that this
invariant can be identified, up to a possible scaling, with the Hamiltonian of the nonlinear Reid oscillator.

A dynamical system for m > 2. In the standard Ermakov case, Eliezer and Gray provided the interpretation of the
classical EL invariant as the integral of motion of angular momentum for a two-dimensional auxiliary motion in a
closed orbit [15] and generalizations to three dimensions also exist [16]. On the other hand, Haas constructed Poisson’s
structures for Ermakov systems using the Ermakov invariant as the Hamiltonian [17]. In general, it is not easy to find
a physical example with nonlinear singularities stronger than the Ermakov inverse cubic one.
Here, we adapt an application from the Kepler classical mechanics that was previously discussed by Nowakowski

and Rosu [18]. We assume that the equation for the energy conservation with power law radial potential V (R) = KRǫ

can be written in the form (henceforth we use the dot notation for the time derivative):

E =
1

2
MṘ2 +

1

2(m− 1)

(−1)m−2l2

MR2(m−1)
+ V (R) = const. (61)

The case m = 2, ǫ = −1 is the standard Kepler case for which the first term is the kinetic energy, the second term is
the centrifugal barrier, and the third the gravitational potential [18].

We take now the time derivative of (61) to obtain the Reid equation

R̈+
1

M

dV

dR
=

(−1)m−2l2

M2
R1−2m (62)

and we notice that (62) is the same as (28) if t = η, R = Q̃, l2

M2 = α, and 1
M

dV

dQ̃
= −Q̃/4, which gives the quadratic

potential V (Q̃) = KQ̃2, with coupling constant K = −M/8 corresponding to a hyperbolic oscillator of imaginary
frequency ω = 1

2 i. Thus, this ǫ = 2 case is integrable and we use the solution (29) to write the particular solution of
(62) as

R(t) =
(

e
m
2
t +

(−1)m−2l2

M2(m− 1)
e−

m
2
t
)

1

m

, W = −1. (63)

The meaning of the invariant is shown by writing (32) in terms of R:

I(R, Ṙ) =
1

2

[

Ṙ2 +
(−1)m−2l2

M2(m− 1)
R2(1−m) − 1

4
R2

]

≡ 1

M

[

1

2
MṘ2 +

(−1)m−2α

2(m− 1)
MR2(1−m) − 1

8
MR2

]

. (64)

Thus, using the hyperbolic radial oscillator as dynamical system, the higher-order EL invariant is the total energy
per unit of mass, i.e., the sum per unit of mass of the kinetic radial energy, the energy due to the Reid nonlinearity,
which is repulsive if m is even and attractive if m is odd, and a third term which can be interpreted as the potential
energy.

In conclusion, in this Letter we derived expressions for the Ermakov-Lewis invariant in the case of the higher-order
Reid generalization of the Ermakov systems of equations. We also provided an example of a dynamical system for
which this invariant is essentially its total energy per unit of mass. We finally mention that similarly to the case of the
standard Ermakov-Lewis invariant [19, 20], another usage of the higher-order invariants is to obtain exact solutions
of time-dependent problems [21].
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(1971) 601-602.
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