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RESUMEN

En este trabajo de tesis se propone un nuevo esquema de control basado en control

repetitivo. La importancia de este controlador radica en su capacidad de compensar

distorsión armónica cuyos componentes sean muy espećıficos, en particular armónicos

6` ± 1, (` = 0, 1, 2, ...,∞) múltiplos de la frecuencia fundamental ω0, esto es, los

armónicos 1, 5, 7, 11, etc.

Una contribución de esta tesis es la introducción de amortigumiento al esquema

repetitivo propuesto, con lo cual, éste pasa de ser un banco de filtros resonantes a

ser un banco de filtros pasabanda. En otras palabras, el controlador pasa de tener

ganancia infinita en los múltiplos (6` ± 1)ω0 a tener ganancia finita, evitando de

esta manera posibles problemas de inestabilidad. Sin embargo, al introducir este

amortiguamiento al controlador, se introduce también un ligero desfasamiento en los

picos de resonancia. Para eliminar dicho desfasamiento, se propone una pequeña

modificacion al controlador que consiste en establecer una relación de ganancias.

Por otro lado, se propone la introducción de un filtro pasabajas (LPF) de primer

orden, derivado de la necesidad de eliminar ruido en la implementacion f́ısica. Esta

modificación introduce un desfasamiento considerable tanto en los picos de resonan-

cia como en los “notches”. En este documento se propone una modificación para

minimizar de manera eficiente dicho desfasamiento.

Con el objetivo de conocer las propiedades energéticas del esquema repetitivo

propuesto, se estudian las propiedades de pasividad del mismo, concluyendose que

éste es pasivo, y que después de la introducción de amortiguamiento mencionado

anteriormente, este se vuelve estrictamente pasivo.

Finalmente, el controlador propuesto aśı como las modificaciones propuestas, se

implementaron digitalmente.
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1. INTRODUCTION

In power electronics applications (i. e. switching power supplies, AC/DC converters,

motor speed control, synchronous rectifiers, UPS and active filters) as well as in many

communications applications, the tracking or rejection of periodic signals is an issue

that commonly arises [1]. Periodic signals can be described as the sum of specific

higher harmonics of the fundamental frequency of the power source, which will be

referred along the thesis as ω0. Hence the compensation issue above described is

addressed also as the harmonic (distortion) compensation issue.

Among the different compensation schemes, repetitive control (see [1], [2], [3])

arises as a simple and practical solution for the harmonic compensation issue pro-

viding exact asymptotic output tracking of periodic inputs or rejection of periodic

disturbances, and is based on the internal model principle [4]. The internal model

principle states that “a controlled output can track a class of reference commands

without a steady error if the generator (or the model) of the reference is included in

the stable closed loop system”. Therefore, it can be used to provide exact asymp-

totic output tracking of periodic inputs or to reject periodic disturbances. It is well

known that the generator of a sinusoidal signal, i.e., containing only one harmonic

component, is a harmonic oscillator, in other words, a resonant filter. Thus, following

this idea, if a periodic signal has an infinite fourier series (of harmonics components),

then an infinite number of harmonic oscillators are required to track or reject such a

periodic signal.

The idea behind the repetitive control approach is that, a simple delay line in a

proper feedback array can be used to produce an infinite number of poles and thereby

simulate a bank of resonant filters, leading to system dynamics of infinite dimension

[5].

First applications of repetitive control were based on the positive feedback scheme
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Figure 1.1: (a) Block diagram of the conventional repetitive scheme, and (b) Frequency

response for f0=60 Hz

[6], [7], [8]. Figure 1.1 shows the block diagram of a repetitive control conventional

scheme. The transfer function of this block diagram is given by

G(s) =
Y (s)

U(s)
=

1

1− e
− 2sπ

ω0

(1.1)

where s = jω and ω0 is the fundamental frequency of the transfer function.

Equation (1.1) generates an infinite number of imaginary poles at every multiple

of the fundamental frequency as observed in Figure 1.1(a). The previous statement

can be interpreted from its Bode diagram as a bank of resonant peaks tuned at every
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single multiple of the ω0, which is settled as ω0=60 Hz, and presenting an infinite

number of valleys in between two consecutive peaks as observed in Figure 1.1(b).

In [1] a repetitive scheme based on positive feedback-feedforward structure, also

called hyperbolic cotangent, was proposed. The feedforward modification produced

notches located in between two consecutive poles as observed in Figure 1.2(a). The

latter offered the advantage of making the repetitive controller more selective, in the

sense that the overlapping in the valleys between two consecutive resonant peaks (as

observed in Figure 1.1(b)) was removed by the notches. The transfer function for this

repetitive scheme is given by

G1(s) =
Y (s)

U(s)
=

1 + e
− 2sπ

ω0

1− e
− 2sπ

ω0

(1.2)

It is important to notice that a positive feedback structure may have the disad-

vantage of compensating for every harmonic, including odd and even harmonics as

well as for the dc component. This can be observed in Figure 1.2(b).

Later, a repetitive scheme based on a negative feedback approach with feedforward

path was introduced in [1], [9], [10] and [11]. The negative feedback repetitive scheme,

also called hyperbolic tangent, is observed in Figure 1.3(a). In contrast to the positive

feedback approach, the negative feedback approach was aimed to compensate for the

odd harmonics only. It can be observed from Figure 1.3(b) that this scheme generates

an infinite number of imaginary poles which can be interpreted as a bank of resonant

filters tuned at every odd multiple of the ω0.

The transfer function for the negative fedback-feedforward scheme is given by

G1(s) =
Y (s)

U(s)
=

1− e
− sπ

ω0

1 + e
− sπ

ω0

(1.3)

The last scheme would reduce the possibility of reinjecting unnecessary distortion

into the closed loop system.

Depending on the application, there may be interest in the compensation of a

selected group of harmonic components. For instance, it is well known that the even

harmonic components do not appear regularly in a power system, and that the most
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Figure 1.2: (a) Block diagram of the hyperbolic cotangent repetitive controller, and (b)

Frequency response for f0=60 Hz.

commonly found are the odd harmonics. Moreover, it has been observed that among

the odd harmonic components, there has been a special interest in industry for the

compensation of harmonics multiples 6` ± 1 (` = 0, 1, 2, ...,∞) of the ω0, that is,

not even harmonics, nor triplet harmonics (multiples of 3). This is due to the fact

that many processes in industry involve the use of six pulse converters which produce

harmonic components at those specific frequencies [12].

Therefore, even though both the positive and the negative feedback based schemes

may apparently solve the harmonics compensation problem, they may lead to more
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Figure 1.3: (a) Block diagram of the hyperbolic tangent repetitive controller, and (b) Fre-

quency response for f0=60 Hz.

distortion, as they would tend to amplify, and even reinject, any low level noise having

harmonic components on the even and the triplet frequencies. This evidently has the

danger of producing responses polluted with such harmonics which were not present

before.

The aim of this thesis work is to present a repetitive scheme which would provide

the solution to the 6`±1 harmonic distortion. The idea behind this proposal is the in-

troduction of a hyperbolic cotangent controller tuned at 6`ω0 into a multisynchronous

transformation. The hypothesis is that after the previous synchronous transformation

a frequency shift of ±ω0 will be introduced to the original 6`ω0 compensator, thereby
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generating harmonics at 6`ω0 ± `ω0.

1.1 Overview

In Chapter 2 the derivation of the proposed repetitive scheme is shown as well as

some of its properties. The equivalence between the proposed scheme and a bank of

resonant filters is stablished. It is presented that after introduction of damping to the

proposed repetitive scheme, a finite instead of infinite magnitude at resonant peaks is

obtained, thus leading to a safer operation. As the repetitive scheme is implemented

digitally, a sample frequency process is involved, which leads to the introduction

of distortion. Then the introduction of a low pass filter (LPF ) is proposed. It

is observed that due to the introduction of damping and a LPF , a phase shift is

introduced. Finally, some energetic properties of the proposed repetitive scheme are

presented. It is shown that it is passive. Moreover, it is shown that after the damping

is introduced the system becomes strictly passive.

In Chapter 3 practical modifications are proposed to the repetitive scheme to

eliminate the phase shift due to the introduction of damping and to minimize the

phase shift due to the introduction of a LPF .

Then in Chapter 4 some experimental results are provided to prove the efficiency

of the proposed scheme.

In Chapter 5 some concluding remarks are presented and future work proposals

are offered.



2. DERIVATION OF THE PROPOSED SCHEME

In this chapter the derivation of the proposed repetitive scheme 6`ω0 is presented

which is based on a frequency displacement lemma. After the repetitive scheme is

obtained some practical modifications are proposed such as a damping gain and a

LPF. Due to the previous modifications a slight phase is introduced.

Passivity properties of the proposed scheme are studied to provide stability prop-

erties in closed loop with other passive systems.

2.1 Preliminaries of multisynchronous transformations and repetitive

control

The derivation of the proposed scheme is based on the well known modulation (fre-

quency displacement) process that suffers the frequency response of a transfer function

when it is pre- and post-multiplied by a frame transformation [13]. This is in agree-

ment with the modulation properties of the Laplace transform [14], since the frame

transformations are nothing else than rotations at a given frequency, thus involving

the Laplace transform of functions multiplied by sinusoidal terms.

To better understand these ideas, let us consider the very well known technique

used in active filters to compensate for the `-th harmonic of the fundamental ω0. This

technique consists of the following three steps:

• First, the system variables are transformed to rotating frame quantities at a

rotating frequency `ω0.

• Second, once in this synchronous frame, the variables are operated by a com-

pensator, where a PI is the most appealed.
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Figure 2.1: Basic structure of a synchronous-PI based controller.

• Third, the compensator outputs are converted back to the stationary reference

frame [13], [15].

A PI is usually considered as the compensator since it guarantees zero steady state

error of dc disturbances. Figure 2.1 shows the basic structure of a synchronous PI

controller [16] including only the integral part. In this figure U(s) is the input vector,

Y (s) the output vector, Φ̂p
` and Φ̂n

` are the `− th phasors of the positive and negative

sequences, respectively; φp
` and φn

` are the `− th vectors of the positive and negative

sequence components; and matrix eJ`ω0t is given by

eJ`ω0t =

[
cos(`ω0t) − sin(`ω0t)

sin(`ω0t) cos(`ω0t)

]

and

e−J`ω0t =
(
eJ`ω0t

)T

Notice that, in the synchronous frame, rotating at `ω0, the `-th harmonic of a

disturbance is assumed to be a dc quantity. Therefore, the PI in such a rotating

frame guarantees zero steady state of the `-th harmonic. This type of scheme is

referred in the literature as synchronous PI associated to a given rotating frame

[16], [17], multiple rotating integrator [18], synchronous-frame harmonic controller
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Figure 2.2: Synchronous frame rotations used in a single phase system.

[15], multiple reference frame controller [13], and multi-synchronous PI controllers

[19]. The main drawback of this scheme is the cumbersome implementation since it

involves two frame transformations, i.e., two rotations for each harmonic component

to be compensated.

It has been shown, however, that this complexity, linked to the frame transforma-

tions, can be considerably reduced by appealing to the modulation properties of the

Laplace transform [20], [21]. Application of such ideas to the synchronous PI, yields

the well known resonant plus proportional compensator referred in the literature as

resonant regulator [20], [21], PIS compensator [22], [23], stationary-frame generalized

integrator [24], multi-resonant controller [19].

A drawback of these schemes is that, a resonant filter was required for each har-

monic under compensation, that is, a bank of resonant filters was required for the

compensation of several harmonics. In fact it was shown in [25], [26] that by means of

suitable rotations it is possible to find the equivalence between the multi-synchronous

PI and the multi-resonant controller. To formalize this equivalence the following lem-

mas can be established, where the first one addresses the single phase case [27]. To

better visualize the applicability of this lemma, Figure 2.2 is presented. The second

lemma refers to the three phase case, and Figure 2.3 shows the rotations involved in

this frame transformation.

Lemma 2.1 Let

x = diag{H(p), H(p)}ρ`u (2.1)

y = ρ>` x (2.2)
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Figure 2.3: Synchronous frame rotations used in a three-phase phase system.

with H(p) ∈ IR(p), u, y ∈ IR and ρ`, x ∈ IR2. Assume

ρ` =

[
sin(`ω0t)

cos(`ω0t)

]

with ω0 ∈ IR+ a positive constant and ` a positive integer. Then

y = Σ(p)u (2.3)

Σ(s) =
1

2
[H(s− j`ω0) + H(s + j`ω0)] (2.4)

¤

The proof for this lemma appears in Appendix A.

Lemma 2.2 Let

xp
αβ = diag{H(p), H(p)}e−J`ω0uαβ (2.5)

xn
αβ = diag{H(p), H(p)}eJ`ω0uαβ (2.6)

yαβ = eJ`ω0xp
αβ + e−J`ω0xn

αβ (2.7)

(2.8)

with H(p) ∈ IR(p), uαβ, yαβ, xp
αβ, xn

αβ ∈ IR2. Assume

eJ`ω0t =

[
cos(`ω0t) − sin(`ω0t)

sin(`ω0t) cos(`ω0t)

]
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and J being the skew-symmetric matrix

J =

[
0 1

−1 0

]

with e−J`ω0t =
[
eJ`ω0t

]>
, ω0 ∈ IR+ a positive constant and ` a positive integer. Then

yαβ = diag{Σ(p), Σ(p)}uαβ (2.9)

Σ(s) = [H(s− j`ω0) + H(s + j`ω0)] (2.10)

¤

The proof for this lemma appears in Appendix B.

Roughly speaking, the effect of the frame transformation is equivalent to a fre-

quency displacement of the compensator frequency response. For instance, an inte-

grator in the synchronous frame description, i.e., H(s) = 1/s, having a pole in the

origin, is equivalent to a resonant filter Σ(s) = s
s2+`2ω2

0
having two poles at ±j`ω0 in

the stationary frame description.

Moreover, if a resonant filter H(s) = s
s2+`2ω2

0
, having poles at ±j`ω0, is placed

inside a rotating frame at a frequency ω0, then the result will be the sum of two

resonant filters:

Σ(s) =
s/2

s2 + (` + 1)2ω2
0

+
s/2

s2 + (`− 1)2ω2
0

having poles in ±j(` + 1)ω0 and ±j(` − 1)ω0 in the stationary frame description.

These similar ideas were exploited in [19] to compensate for harmonics 1st, 5th, 7th,

11th and 13th of ω0 by using resonant filters tuned at 6th and 12th harmonics of

ω0 and a PI regulator in a single synchronous frame1 rotating at the fundamental

frequency ω0.

In [1] a positive feedback plus feedforward scheme (also called hyperbolic cotan-

gent) was presented. This scheme produces an infinite number of poles at every

single multiple of a given frequency ω1, i.e., located at ±j`ω1, (` = 0, 1, 2, ...,∞), plus

an infinite number of zeros located in the midpoint between two consecutive poles,

i.e., at ±jω1(2` + 1)/2 (see Figure 1.2). Therefore, if we fix ω1 = 6ω0 this scheme

1 The authors use only the dq reference frame, i.e., only the positive sequence part.
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should produce poles located at ±j6`ω0, i.e., resonant peaks at 6`ω0, and zeros at

±j3(2` + 1)ω0, i.e., notches at 3(2` + 1)ω0. The expression for this repetitive scheme

is given by

G(s) =
1 + e

− sπ
3ω0

1− e
− sπ

3ω0

(2.11)

The transfer function (2.11) can be easily implemented as seen in block diagram of

Figure 2.4(a), which will generate an infinite number of imaginary poles tuned at 6`ω0.

In the Bode diagram of Figure 2.4 resonant peaks tuned at every 6`ω0 multiples of

the fundamental frequency can be observed as predicted. Besides, an infinite number

of notches tuned at 3(2`± 1) are also observed.

Following with the previous ideas (regarding frequency displacement), it is pro-

posed here to place the repetitive scheme (2.11) as the compensator inside a synchro-

nous frame description with frame transformations rotating at ω0. That is, consider

H(s) = G(s) and, for simplicity, consider only the single phase case, then the pro-

posed controller yields the scheme shown in Figure 2.5. This will produce in principle

an infinite number of poles located at ±j(6`± 1)ω0 (` = 0, 1, 2, ...∞), i.e., an infinite

number of resonant peaks will be generated at (6` ± 1)ω0 after coming back to the

stationary frame description. The combined scheme presented in Figure 2.5 can be

further reduced avoiding the frame transformations by simple manipulations as shown

below.

Consider H(s) = G(s) as given by (2.11), and use expression (2.4) to compute the

transfer function, this yields

Σ(s) =
1

2

(
1 + e

−(s−jω0) π
3ω0

1− e
−(s−jω0) π

3ω0

+
1 + e

−(s+jω0) π
3ω0

1− e
−(s+jω0) π

3ω0

)

=
1− e

− 2sπ
3ω0

1 + e
− 2sπ

3ω0 − e
− sπ

3ω0 (e−
jπ
3 + e

jπ
3 )

=
1− e

− 2sπ
3ω0

1 + e
− 2sπ

3ω0 − e
− sπ

3ω0

(2.12)

This yields a considerably reduced repetitive scheme which is relatively easy to
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Figure 2.4: (a) Block diagram of the hyperbolic cotangent controller tuned at 6ω0, and (b)

Frequency response for f0=60 Hz.
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Figure 2.5: Combined repetitive scheme in a synchronous frame rotating at ω0 producing

resonance peaks at (6`± 1)ω0 and notches at 3(` + 1)ω0.

implement. It comprises a couple of delays in cascade connection, owning the same

time delay arranged in a couple of feedbacks and a feedforward path as shown in

Figure (2.6(a)).

2.2 Pole-Zero location of the proposed 6`± 1 repetitive scheme

Proposition 2.3 The 6`± 1 repetitive scheme given by (2.12) has its poles at (6`±
1)ω0 (` = 0, 1, 2, ...,∞), and zeros at 3`ω0 (` = 0, 1, 2, ...,∞). ¥

Proof: An equivalent expression from (2.12) in terms of hyperbolic functions is

obtained as follows

Σ(s) =
1− e

− 2sπ
3ω0

1 + e
− 2sπ

3ω0 − e
− sπ

3ω0

=
e

sπ
3ω0 − e

− sπ
3ω0

e
sπ
3ω0 + e

− sπ
3ω0 − 1

=
2 sinh( sπ

3ω0
)

2 cosh( sπ
3ω0

)− 1
(2.13)

Using properties of the hyperbolic functions [28], an equivalent rational expression

can be obtained where numerator and denominator are described in the form of

products of binomials as follows

Σ(s) =
2 sinh( sπ

3ω0
)

2 cosh( sπ
3ω0

)− 1
=

sπ
3ω0

∏∞
`=1(

s2

(3`)2ω2
0

+ 1)
∏∞

`=−∞( s2

(6`+1)2ω2
0

+ 1)
(2.14)
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Figure 2.6: (a) Block diagram of the proposed 6`±1repetitive controller, and (b) Frequency

response for f0=60 Hz.
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It is easy to see that the transfer function (2.14) contains an infinite number of

poles at ±j(6`+1)ω0 (` = 0, 1, 2, ...,∞) and ±j(6`−1)ω0. Moreover, it also comprises

an infinite number of zeros located at ±j3`ω0 as shown in the complex plane in Figure

2.6(a).

As expected, the Bode plot consists of an infinite set of resonant peaks centered

at frequencies (6` ± 1) (` = 0, 1, 2, ...,∞) of ω0, and notches centered at frequencies

3`(` = 0, 1, 2, ...,∞) of ω0 as shown in Figure 2.6(b). Notice also that the phase shift

is zero exactly at those frequencies. Moreover, it can be noticed that the phase shift

varies between 90 and -90 degrees.

∇∇∇

It is important to notice that it would be possible, at least in theory, to extend

the previous theory for the compensation of (12`± 1) harmonics. It would be needed

to obtain the transfer function of the hyperbolic cotangent tuned at 12ω0 and then

to apply the modulation lemma to the resulting transfer function. The expected ±ω0

shifting would be obtained. This would result in a delay line modification.

2.3 First modification: introduction of a limiting gain K

The gain at the resonant frequencies is, in theory, infinite and thus, it may lead to

instability problems. To limit the infinite gain at the resonant frequencies, and thus

guarantee a safer operation, it is proposed to add damping to all the poles, i.e., to

slightly shift them to the left of the imaginary axis [1]. It is important to notice

that this modification provides the repetitive scheme with robustness, resulting in a

tolerance for a slight shift in the fundamental frequency location.

The shifting process is approached by proposing Σ̃(s) = Σ(s + a). Applying the

shifting to the exponential term in (2.12), it results in e
−(s+a)π

3ω0 = e
−aπ
3ω0 e

−sπ
3ω0 . Notice

that, this is equivalent to multiply the exponential term by a gain factor K, where

K would be defined as

K = e
−aπ
3ω0 (2.15)

It can be observed from (2.15) that if a gain K > 1 is proposed, the poles move
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Figure 2.7: Process of shifting the poles and zeros to the left.

to the right, but if 0 < K < 1 then they move to the left as shown in Figure 2.7.

The transfer function after this practical modification is given by

H (s + a) =
1−K2e

−2s π
3ω0

1 + K2e
−2s π

3ω0 −Ke
−s π

3ω0

(2.16)

The magnitude and phase of transfer function (2.16) are given by

|H (jω + a)| =
√

1 + K4 − 2K2 cos( 2π
3ω0

ω)

1 + K2 + K4 − 2(K + K3) cos( π
3ω0

ω) + 2K2 cos( 2π
3ω0

ω)
(2.17)

and

θ = − arctan

[
K(1 + K2 − 4K cos( π

3ω0
ω)) sin( π

3ω0
ω)

1−K4 + K(−1 + K2) cos( π
3ω0

ω)

]
(2.18)

respectively.

The resonant peaks after the introduction of damping, ocurr at

ω =
3ω0

π
arccos

[
2 + K2 + 2K4 −√3

√
1 + K4 + K8

2(K + K3)

]
(2.19)

Thus, by substituting (2.19) in (2.17), the magnitude at the resonance peaks

(originally of infinite magnitude) reaches a maximum of
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√
6K2 + 2

√
3
√

1 + K4 + K8

3(−1 + K2)2
(2.20)

Meanwhile the notches still occur at ω = 3`ω0 reaching a magnitude of either

m1 =
1−K2

1 + K + K2
(2.21)

or

m2 =
1−K2

1−K + K2
(2.22)

It is important to notice that the new position of the resonant peaks can be

approximated using Taylor’s series (around K = 1), which yields

ω = (6`± 1)ω0 ±
[√

3

π

(K − 1)2

2

]
ω0 (2.23)

That is, there is a small difference given by
√

3
π

(K−1)2

2
ω0 from the expected fre-

quencies (6` ± 1)ω0. Notice that this difference tends to zero as K gets closer to

1.

Figure 2.8(a) shows the block diagram of proposed scheme after damping K intro-

duction. Figure 2.8(b) shows the theoretical Bode plots for several values of K (0.95,

0.75, 0.5), and considering the compensation of harmonics at 60 Hz. In this case, the

delay time is fixed to τd = π/(3ω0) = 2.77 ms. For K = 0.95, the plot goes from 25.8

dB at the resonant frequencies, to -20 dB or -29.3 dB at the notches. However, if the

gain is reduced to K = 0.75, the corresponding maximum magnitude is 11 dB and

for the minimums -5.38 dB or -14.5 dB. A further reduction of K to K = 0.5 results

in maximum magnitudes of 5 dB, and minimum magnitudes of 0 and -7.35 dB.

Figure 2.8(b) clearly shows that, as gain K decreases, the peak amplitude is

reduced while the bandwidth of each peak increases, thus increasing its robustness

with respect to frequency variations. However, it can be observed (from the phase

plots in Figure 2.8(b)) that the phase shift is not zero at the resonance peaks (due to

the effect of gain K in the transfer function), phase shift is zero at the notches though.

It can be noticed that the slight phase shift is introduced only at the resonance
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Figure 2.8: (a) Block diagram of the proposed 6`±1repetitive controller, and (b) Frequency

Response of the proposed (6` ± 1) repetitive controller for K ∈ 0.5, 0.75, 0.95

and for f0=60 Hz.
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Figure 2.9: Frequency response of the proposed repetitive controller without (solid line) and

with damping (dashed line)gain K = 0.7 and f0=60 Hz.

peaks. This phase shift can be approximated using Taylor’s series (around K = 1) at

(6`± 1)ω0 by

θ = −(K − 3)(K − 1)

2
√

3
(2.24)

Notice that θ tends to zero as K gets closer to 1. Figure 2.9 shows in more detail

the phase shift produced by the introduction of the damping gain K which arises

only at the resonance peaks and it is constant. In solid line a damping gain of K = 1

is considered while in dashed line a damping gain of K = 0.7 is considered. It can

be observed that, in the case of K = 0.7, a phase shift equal to 5.36 deg is obtained

as shown in Figure 2.9. This phase shift is also obtained by substituting K = 0.7 in

(2.24). The possibility to eliminate or at least reduce this phase shift will be explored

in next chapter.

2.4 Second modification: Introduction of a LPF

Besides the infinite gain issue, another issue to overcome is the noise introduced by

the sampling process, recall that the proposed controller is digitally implemented. As

it is well known, digital implementation involves a sampling process which introduces

noise into the controller signal. Thus, introduction of a simple Low Pass Filter (LPF )
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as shown in Figure 2.10 is recommended.

After introduction of the LPF of the form 1
τs+1

, where τ is the cut-off frequency,

in the transfer function (2.17), the following transfer function is obtained

HLPF =
(τs + 1)2 −K2e

−2s π
3ω0

(τs + 1)2 + K2e
−2s π

3ω0 − (τs + 1)Ke
−s π

3ω0

(2.25)

Magnitude and phase of the transfer function (2.25) are given by

|HLPF | =
√

N(ω,K, τ)

D(ω, K, τ)
(2.26)

where,

N(ω, K, τ) , (1−K2 + τ2ω2)2(1 + K2 + τ2ω2 −K cos(τdω) + Kτω sin(τdω))2

+K2(τω cos(τdω) + sin(τdω))2(1 + K2 + τ2ω2 − 4K cos(τdω) + 4Kτω sin(τdω))2

D(ω, K, τ) , (1 + K2 + K4 + (2 + K2)τ2ω2 + τ4ω4 − 2K(1 + K2 + τ2ω2) cos(τdω)

+2K((K −Kτ2ω2) cos(2τdω) + τω(1 + K2 + τ2ω2 − 4K cos(τdω)) sin(τdω)))2

and

θ = − arctan
[
K(τω cos(τdω) + sin(τdω))(1 + K2 + τ2ω2 − 4K cos(τdω) + 4Kτω sin(τdω))

(1−K2 + τ2ω2)(1 + K2 + τ2ω2 −K cos(τdω) + Kτω sin(τdω)

]

(2.27)

respectively, where τd , π
3ω0

.

The addition of the LPF restricts the bandwidth of the controller. However, it

may produce some slight inaccuracies as it is observed in Figure 2.11. It is observed

that a considerable phase shift appears, and moreover in this case it is different for

each 6`±1 (` = 0, 1, 2, ...,∞) harmonic. The magnitude at the resonant peaks changes

also from peak to peak, due to the fact that variable ω is multiplying by sinus and

cosines functions as observed from (2.26).

Figure 2.11 shows the theoretical Bode plot for transfer function HLPF for com-

pensation of harmonics at 60 Hz with a delay time fixed to 2.77 ms and a K = 0.9.

In this case a first order low pass filter is considered. The frequency response for the

case without the introduction of the LPF is shown in solid line. This plot goes from

19.59 dB at the resonant frequencies to either -23.08 dB or -13.6 dB at the notches.
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Figure 2.10: Block diagram of the proposed repetitive controller including damping gain K

and first order LPF .

The frequency response of the transfer function, after the LPF modification, is shown

in dashed line. It can be observed that after the introduction of the LPF, the reso-

nant peaks have been shifted from the resonant frequencies and a substantial phase

shifting has been introduced as well.

On the other hand, Figure 2.12 shows the Nyquist plot after the introduction

of the LPF into the repetitive scheme for different values of K. Square marks are

placed at the resonant peaks, that is at ω = (6` ± 1)ω0 ±
[√

3
π

(K−1)2

2

]
ω0, while star

marks are placed at the expected (6` ± 1)ω0 (` = 0, 1, 2, 3, ...,∞). Numbers on the

Nyquist plots regard the harmonic they represent. For example 1 and 1’ represent

the first harmonic’s resonant peak and the first harmonic’s magnitude at (6` ± 1)ω0

respectively. 5 and 5’, 7 and 7’, 11 and 11’ and 13 and 13’, represent the resonant

peaks and the magnitudes at (6`± 1)ω0 for ` = 1, 2 respectively.

It can be observed from the Nyquist plot that the magnitude is different for each

harmonic. Besides it can be observed that the magnitude at the resonant peaks

presents an important phase from the magnitude at the expected (6` ± 1)ω0 (` =

0, 1, 2, 3, ...,∞). Next chapter will explore the possibility of minimizing and even

eliminate the phase presented previously.
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Figure 2.11: Frequency response of the proposed repetitive scheme (solid) without LPF and

(dashed) with LPF for K = 0.9, fundamental frequency f0=60Hz and τ=1000

Hz.
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Summarizing, as a consequence of these two modifications, i.e., introduction of

gain K and LPF , two side effects appear: first, resonant peaks and notches are shifted

from the corresponding harmonic frequency, and second, a phase shift is introduced.

These effects get worst in case that a LPF is included. In the next chapter some

practical modifications are proposed to alleviate the phase-shift issue.

2.5 Preliminaries on Passivity properties of Linear Time discrete

time

This section studies the passivity properties of the proposed repetitive scheme 6`± 1

as well as the passivity properties of hyperbolic tangent and hyperbolic cotangent

controllers. It is shown that these schemes are discrete-time positive real and thus

passive. Moreover, after the introduction of damping, it is shown that the proposed

repetitive scheme as well as the passivity properties of hyperbolic tangent and hyper-

bolic cotangent are in fact strictly passive. Passive properties are of great relevance

when the proposed repetitive scheme is combined in a closed loop system, as it gives

a guarantee of stability.

Before proceeding with the study of the passivity properties of this scheme, it is

important to remark that, we are faced with infinite-dimensional delay-differential

equations to which the standard tools are not directly applicable. In [29] the authors

show that several reported statements of positive-real (PR) discrete-time transfer

functions are not completely correct, and presented a lemma that gave the correct

conditions for a system to be discrete-time passive, or equivalently discrete-time PR.

This lemma is recalled here below for completeness, as well as a lemma taken from

[30] which are the basis for the stability study.

Lemma 2.4 (Discrete-time PR) Consider an LTI discrete-time system

y(kτd) +

nD∑
i=1

Diy(kτd − `τd) =

nN∑

`=0

N`u(kτd − `τd)

with τd ∈ IR+, k ∈ Z+, D`, N` ∈ IR, nN ≤ nD. Assume the associated discrete-time

transfer function
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H(eτds) =

∑nN

`=0 N`e
−`τds

1 +
∑nD

i=1 Die−`τds
(2.28)

is discrete-time PR, that is, it satisfies

(i) H(eτds) is analytic in |eτds| > 1.

(ii) All poles of H(eτds) on |eτds| = 1 are simple.

(iii) Re{H(ejθ)} ≥ 0 for all θ ∈ IR at which H(ejθ) exists.

(iv) If ejθ0 , θ0 ∈ IR is a pole of H(eτds), and if r0 is the residue of H(eτds) at eτds = ejθ0 ,

then e−jθ0r0 ≥ 0.

The system is discrete-time passive, that is, there exists β0 ∈ IR such that

N∑

k=0

y(kτd)u(kτd) ≥ β0

for all input sequences u(kτd) ∈ L2 and all N ∈ Z+

¤

Lemma 2.5 (Passivity of continuous-time delayed systems) Consider an LTI

continuous-time system described by the delay equation

y(t) +

nD∑
i=1

Diy(t− `τd) =

nN∑

`=0

N`u(t− `τd)

with τd, t ∈ IR+, D`, N` ∈ IR, nN ≤ nD. Assume the discrete-time transfer function

(2.28) is discrete-time PR. Then, the system is passive, that is, there exists β1 ∈ IR

such that ∫ t

0

y(τ)u(τ)dτ ≥ β1

for all input functions u(t) ∈ L2 and all t ∈ IR+.

¤

Then the following definition has been extracted from [31] and is used here to

prove that the modified proposed scheme is strictly positive real (SPR).

Definition 2.6 H(s) is SPR if and only if there exists some ε > 0 such that H(s−ε)

is PR.
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2.6 Passivity properties of the hyperbolic tangent compensator

Proposition 2.7 The negative feedback-feedforward repetitive scheme given by (1.3)

is discrete-time PR and thus passive. ¥

Proof: Rewriting (1.3) in terms of the delay time τd yields

H(eτds) = tanh
(τds

2

)
=

1− e−τds

1 + e−τds
=

eτds − 1

eτds + 1

The partial fraction expansion of this expression gives

H(eτds) = 1− 2

eτds + 1

hence the transfer function satisfies conditions (i) and (ii) of Lemma 2.4. The residue

associated with the fixed pole at e−jθ0 = −1 is r0 = −2, and thus condition (iv) is sat-

isfied. Finally, some simple computations prove that, Re{H(ejθ)} = Re{ j sin(θ)
1+cos(θ)

} = 0,

thus fulfilling condition (iii). This proves that the hyperbolic tangent scheme is

discrete-time PR and, according to Lemma 2.5, it is passive.

∇∇∇

In [1] a gain K is included to the hyperbolic tangent scheme as follows.

1−Ke−τds

1 + Ke−τds
(2.29)

The aim of this practical modification is to prevent high gains in the resonant

peaks and to enhance the robustness with respect to frequency variations. In fact,

the peaks, originally of infinite magnitude, reach a maximum magnitude of 1+K
1−K

while

the notches reach a minimum magnitude of 1−K
1+K

.

This modification can also be seen as a frequency shifting process H̃(s) = H(s+a)

as shown below. By proposing a gain factor K = e−τda we obtain
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1−Ke−τds

1 + Ke−τds
=

1− e−τd(s+a)

1 + e−τd(s+a)
=

e−
τd(s+a)

2 − e−
τd(s+a)

2

e−
τd(s+a)

2 + e−
τd(s+a)

2

= (2.30)

=
sinh

(
τd(s+a)

2

)

cosh
(

τd(s+a)
2

) = tanh

(
τd(s + a)

2

)
(2.31)

Therefore, if a gain K > 1 is proposed, the poles and zeros move to the right,

while if 0 < K < 1 is proposed then they move to the left.

The following definition has been extracted from [31] and is used here to prove

that the modified proposed scheme is strictly positive real (SPR).

Definition 2.8 A transfer function G(s) is SPR if and only if there exists some ε > 0

such that G(s− ε) is PR.

Proposition 2.9 The modified scheme (2.29) with 0 < K < 1 is SPR and thus

strictly passive. ¥

Proof: According to Definition 2.8, it should be proved that, there exists an ε > 0

such that
1−Ke−τd(s−ε)

1 + Ke−τd(s−ε)
(2.32)

is positive real (∈ {PR}).

First, let us select ε = a where a = −τd ln(K). Notice that, ε = a > 0 as far

as 0 < K < 1. Second, consider K = e−τda as defined above, which, after direct

substitution, reduces expression (2.32) to tanh
(

τds
2

)
. The proof is completed by

recalling that, tanh
(

τds
2

)
is PR according to Proposition 2.7.

∇∇∇

2.7 Passivity properties of the hyperbolic cotangent compensator

In [32] it is shown that, Z(s) is PR if and only if 1/Z(s) is PR. And also that, Z(s)

is SPR if and only if 1/Z(s) is SPR. According to this statements and based on the
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fact that coth(·) = 1/ tanh(·), it is straightforward to establish the validity of the

following corollaries. The time delay required for the implementation of this scheme

is given by τd = 2π
ω0

.

Corollary 2.10 The hyperbolic cotangent scheme given by (1.2) is PR and thus

passive.

Corollary 2.11 The modified scheme

1 + Ke−τds

1−Ke−τds
(2.33)

with 0 < K < 1 is SPR and thus strictly passive.

In fact the modified scheme can also be written as coth
(

τd(s+a)
2

)
with a =

− 2
τd

ln(K), and taking 0 < K < 1 the poles and zeros are shifted to the left of

the imaginary axis in the complex plane (Re{s} < 0).

2.8 Passivity properties of the 6`± 1 compensator

Proposition 2.12 The 6`± 1 repetitive scheme given by (2.12) is discrete-time PR

and thus passive. ¥

Proof: Rewriting (2.12) in terms of the time delay τd = π
3ω0

(used along this section

to simplify the notation) yields

H(eτds) =
1− e−2τds

1 + e−2τds − e−τds
=

e2τds − 1

e2τds − eτds + 1
(2.34)

The expansion of this expression gives

H(eτds) = 1 +
eτds − 2

e2τds + 1− eτds

= 1 +
1

2

(
1 +

√
3i

eτds − e
iπ
3

+
1−√3i

eτds − e
−iπ
3

)
(2.35)
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Hence, the transfer function satisfies conditions (i) and (ii) of Lemma 2.4. For (iii)

it is found that Re{H(ejθ)} = Re{ j2 sin(θ)
−1+2 cos(θ)

} = 0. For the last condition, the two

residues are given by r1 = 1
2

+
√

3
2

i and r2 = 1
2
−

√
3

2
i, and the poles corresponding to

each residue are θ1 = π
3

and θ2 = −π
3
, respectively. Then e−jθ1r1 = 1 and e−jθ2r2 = 1

and the condition is fulfilled. This proves that, the 6`±1 (` = 0, 1, 2, 3, ...,∞) scheme

is discrete-time PR and, according to Lemma 2.5, it is passive.

∇∇∇

As it was presented in chapter 1, a gain K is included affecting each delay line.

The aim of this practical modification is to prevent high gains in the resonance peaks

and to enhance the robustness with respect to frequency variations.

This yields the following modified expression

H(eτds) =
1−K2e−2τds

1 + K2e−2τds −Ke−τds
(2.36)

Proposition 2.13 The modified scheme (2.16) with 0 < K < 1 is SPR and thus

strictly passive. ¥

Proof: According to Definition 2.8, it should be proved that, there exists an ε > 0

such that

1−K2e−2τd(s−ε)

1 + K2e−2τd(s−ε) −Ke−τd(s−ε)
(2.37)

is positive real (∈ {PR}).

First, let us select ε = a where a = −τd ln(K). Notice that, ε = a > 0 as far

as 0 < K < 1. Second, consider K = e−τda as defined above, which, after direct

substitution, reduces expression (2.37) to 2 sinh(τds)

2 cosh(τds)−1
. The proof is completed by

recalling that, 2 sinh(τds)

2 cosh(τds)−1
is PR according to Proposition 2.12.

∇∇∇

Figure 2.13 shows that, the Nyquist plot of scheme (2.36) goes from a flattened

circle for 0 < K <
√

2
10

to a cardioid for
√

2
10

< K < 2 − √
3. Then, for 2 − √

3 <

K < 1 the Nyquist plot becomes a limaçon that approaches a circle of arbitrarily
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Figure 2.13: Nyquist plot of the 6` ± 1 compensator after damping gain K modifica-

tion. Square marks are placed at resonant peaks, that is at ω = (6` ±
1)ω0 ±

[√
3

π
(K−1)2

2

]
ω0, while star marks are placed at the expected (6`± 1)ω0

(` = 0, 1, 2, 3, ...,∞) frequncies.
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large radium as K gets closer to 1. Square marks are placed at resonant peaks, that

is, at ω = (6` ± 1)ω0 ±
[√

3
π

(K−1)2

2

]
ω0, while star marks are placed at the expected

frequencies, that is, at (6`± 1)ω0 (` = 0, 1, 2, 3, ...,∞).

It is clear that the range of interest lies in values of K slightly smaller than 1,

i.e., when the Nyquist plot corresponds to a limaçon. Notice that the Nyquist plot

is strictly contained in the right hand side of the complex plane (Re{s} > 0), as

established by (2.21), which is never less than or equal to zero for 0 < K < 1.



3. COMPENSATION OF THE PHASE SHIFT CAUSED BY THE

PRACTICAL MODIFICATIONS

In this chapter, some practical modifications to the repetitive scheme are proposed

to minimize and even to get rid of the phase shift thus compensating in closed loop

exactly at the specific 6`±1 (` = 0, 1, 2, ...,∞) harmonics.

3.1 Eliminating the phase shift caused by the introduction of the

damping gain K

As it was previously presented, due to the introduction of positive gain K in the

proposed repetitive transfer function, a slight phase shift appears at the resonant

peaks. It was found that the resonant peaks are not exactly placed at ω = (6`± 1)ω0

(` = 0, 1, 2, ...,∞) but instead they are placed at ω = (6` ± 1)ω0 ±
[√

3
π

(K−1)2

2

]
ω0

(` = 0, 1, 2, ...,∞). That is, there is a slight difference with respect to the expected

frequencies ω = (6` ± 1)ω0 which is given by ∆ω =
√

3
π

(K−1)2

2
ω0. Notice that this

slight difference reaches zero as K reaches 1. On the other hand, the phase of transfer

function (2.16) at ω = (6`± 1)ω0 is given by

θ = ∓ arctan

[ √
3K(−1 + K)

2 + K + K2 + 2K3

]
(3.1)

Notice that expression (3.1) reaches zero as K reaches 1 but this would lead to

infinite gain at resonant peaks. To overcome this issue it is proposed here to utilize

two different gains for each delay block, that is, a K1 to replace the bottom K and a

K2 for the top K. After these modifications the block diagram shown in Figure 3.1

is obtained.
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Figure 3.1: Block diagram of the repetitive scheme with K1 and K2 to eliminate phase shift

The following transfer function is obtained from the block diagram

G(s) =
Y (s)

U(s)
=

1−K1K2e
−2sπ
3ω0

1 + K1K2e
−2sπ
3ω0 −K1e

−sπ
3ω0

(3.2)

The phase shift of transfer function (3.2) at ω = (6` ± 1)ω0 (` = 0, 1, 2, ...,∞) is

given by

θ = arctan

[ √
3K1(1− 2K2 + K1K2)

(−1 + K1K2)(2−K1 + 2K1K2))

]
(3.3)

which is made zero by selecting the gain according to

K1 = 2− 1

K2

(3.4)

Thus the previous relationship will ensure phase equal to zero at frequencies ω =

(6`± 1)ω0 (` = 0, 1, 2, ...,∞).

After replacing (3.4) in (3.2) the next transfer function is obtained

G2(s) =
Y (s)

U(s)
=

1− (2K2 − 1)e
−2sπ
3ω0

1 + (2K2 − 1)e
−2sπ
3ω0 − (2− 1

K2
)e

−sπ
3ω0

(3.5)

The gain at the resonant peaks for the transfer function (3.5) is given by
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|G2(s)| = 1√
2

√
−1 + A + B

C
(3.6)

where

A = 4K2(1 + 2(−1 + K2)K2)

B =
√
−16K6

2(−1 + 2K2) + (1 + 4K2(−1 + 2K2(1 + (−1 + K2)K2)))2

C = (−1 + K2)
2(1− 2K2 + 4K2

2)

Which are located at the following frequencies different from (6` ± 1)ω0 (` =

0, 1, 2, ...,∞):

ω =
3

π
arccos

[
1 + D − E

F

]
(3.7)

where

D = −4K2 + 8K2
2 − 8K3

2 + 8K4
2

E =
√
−8K6

2(−2 + 4K2) + (−1 + 4K2 − 8K2
2 + 8K3

2 − 8K4
2)2

F = 2K2
2(−2 + 4K2)

The location of the resonant peaks can be approximated using Taylor´s series

(around K = 1) as ω = (6` ± 1)ω0 ∓
[√

3
π

(K2 − 1)2
]
ω0, that is, there is a small

difference given by
[√

3
π

(K2 − 1)2
]
ω0 from the expected frequencies (6`±1)ω0. Notice

that, this difference approaches zero as K approaches 1. The gain at (6`± 1)ω0, (` =

0, 1, 2, ...,∞) is given by K2

1−K2
. There are again two minimums with gains given by

m1 = 2(−1+K2)K2

1−2(1+K2)
and m2 = 2(1−K2)K2

1+2(−1+K2)
. These minimums occur exactly at frequencies

3`ω0(` = 0, 1, 2, ...,∞).

Remark. It can be observed from K1 = 2− 1
K2

that for stability issues, K1 and

K2, must lay between 0 and 1. In order to preserve this condition the next restriction

shall be fulfilled 0.5 < K2 < 1.

Figure 3.2 shows the theoretical frequency response of transfer function (2.16)

can be observed in dashed line at Figure 3.2 with a fundamental frequency equal to
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Figure 3.2: Bode plot of the proposed repetitive scheme with K1 = K2 = 0.7 (dashed line)

and K1 = 0.667, K2 = 0.7 (solid line). ∆θ represents the difference between

same K case and different K ′s case. Both cases for f0=60 Hz.
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Figure 3.3: Nyquist plot of the 6`±1 (` = 0, 1, 2, ..), repetitive proposed scheme for different

values of K1 and K2.

f0 = 60 Hz and the delay time is fixed to τd = 2.77 ms and K = 0.7. The magnitude

goes from 9.45 dB at the resonant frequencies to −12.65 dB or −3.8 dB at the notches.

In solid line the plot for transfer function (3.5) is considered. With a fundamental

frequency equal to f0 = 60Hz and the delay time is fixed to τd = 2.77 ms and

K = 0.75. this plot goes from 7.5 dB at the resonant frequencies to −10.33 dB or

−2.8 dB at the notches.

It can be observed from the phase response of transfer function (2.16) a small phase

shift equal to ±5.36. Meanwhile in phase plot of transfer function (3.5) the phase

shift has been eliminated at the resonance peaks (due to the effect of the dependent

K1 in the transfer function), and as usual the phase shift is zero at notches. Plots are

bounded by 90 and -90 degrees. Later details of the experimental implementation of

this modification will be presented.

Figure 3.3 shows the Nyquist diagram for (3.2) this time it can be observed that

the phase shift at (6`± 1)ω0 harmonics is zero.
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3.2 Reducing the phase shift caused by the introduction of the LPF

As it was mentioned previously the addition of a LPF restricts the bandwidth of the

controller. However, it may produce some slight inaccuracies. As a consequence of

this modification two side effects appear: first, resonant peaks and notches are slightly

shifted from the corresponding harmonic frequency, and second, a substantial phase

shift appears at the tuned harmonic frequencies.

Let us consider that the LPF is introduced in the system of Figure 3.1, that is,

using different K1, K2, whose transfer function is given by (3.5). The LPF is of the

form 1
τs+1

, where τ is the inverse of the cut frequency. The block diagram of the

proposed repetitive scheme after this modification can be seen in Figure 3.4. This

modification leads to the next transfer function

Gf (s) =
(τs + 1)2 −K1K2e

−2τds

(τs + 1)2 + K1K2e−2τds − (τs + 1)K1e−τds
(3.8)

where τd = π
3ω0

The phase of this transfer function is given by

θ = ∓ arctan

[
K1 (τω cos (τdω) + sin (τdω))

(
1 + K1K2 + τ2ω2 − 4K2 cos (τdω) + 4K2τω cos (τdω)

)

(1−K2 + τ2ω2) (1 + K1K2 + τ2ω2 −K1 cos (τdω) + K1τω cos (τdω))

]

(3.9)

This phase expression is more elaborated than the one in (3.3) due to the intro-

duction of the LPF. It can be observed that the phase shift at the resonant peaks is

not constant, since ω appears multiplying sinus and cosines functions. Therefore, the

phase shift is different for each different harmonic component. Moreover, it can be

shown there is not possible combination of K1 and K2 to eliminate the phase shift

at (6`± 1)ω0 (` = 0, 1, 2, 3, ...,∞) due to the previous arguments. To try to alleviate

this issue, it is proposed to introduce an increment ∆τd in the time delay which leads

to the next transfer function

G∆(s) =
(τs + 1)2 −K1K2e

−2s(τd+∆τd)

(τs + 1)2 + K1K2e−2s(τd+∆τd) − (τs + 1)K1e−s(τd+∆τd)
(3.10)
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The objective consist in finding an ∆τd such that the phase shift is zeroed at

(6`± 1)ω0 (` = 0, 1, 2, 3, ...,∞).

The phase of tranfer function (3.10) is given by

θ∆ = − arctan

[
(−1 + 2K2) (τω cos (θd) + sin (θd))

(
2K2 + τ2ω2 − 4K2 cos (θd) + 4K2τω sin (θd)

)

(−2 + 2K2 − τ2ω2) (K2(2K2 + τ2ω2) + (1− 2K2) cos (θd) + (−1 + 2K2)τω sin (θd))

]

(3.11)

where θd = (τd + ∆τd)ω. It can be shown that the phase shift will equal zero for

∆τd =
arctan(τω)

ω
(3.12)

Notice, however, that this expression depends on ω, and thus, the phase shift can

be zeroed at an specific harmonic but not at every harmonic. A solution that solves

the problem, at least in average, can be proposed as follows

∆τd =
1

ω2 − ω1

∫ ω2

ω1

arctan(τω)

ω
dω (3.13)

which computes the average of (3.11) in a range [ω1, ω2]. Roughly speaking, the

phase shift is minimized in average in this range of frequencies. For instance, if it

is desired to compensate the 1st, 5th, 7th, 11th and 13th harmonics of 60 Hz, then

the initial and final frequencies could be 0 and 1000 Hz, respectively, since the 1st

harmonic starts at 60 Hz and the 13th at 780 Hz. The proposed method leads to

valuable results reducing the phase shift on each harmonic frequency considerably as

shown in the next simulations.

In what follows, simulations are carried out to highlight the benefits of this ∆τd-

modification. In these simulations a LPF with cut off frequency equal to 1000 Hz

has been considered, and thus, it is convenient to consider, ω2=2π1000 rad/s, ω1=0

rad/s, K1 = 0.75 and K2 = 0.8 have been considered. Evaluation of (3.13) results in

∆τd = −14.8304 µs.

Figure 3.5 shows the comparison between the Bode plot with LPF modification

before the ∆τd compensation (dashed line), and the Bode plot with LPF modification

after the ∆τd compensation has been enabled (solid line). Notice for instance that,

at the 5th harmonic, the phase shift is reduced from −35.95 deg to −0.902397 deg.
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Figure 3.4: Block diagram of the proposed repetitive scheme with ∆τd-modification

To show better the advantages of the ∆τd-compensation, it can be observed from

Figure 3.6 the comparison of three different Bode plots. First, (dashed line) the

Bode plot of the proposed repetitive scheme (6` ± 1)ω0 (` = 0, 1, 2, 3, ...,∞) before

introduction of the LPF is shown. Second, (dotted line) the Bode plot of the proposed

repetitive scheme (6` ± 1)ω0 (` = 0, 1, 2, 3, ...,∞) after introduction of the LPF and

before ∆τd compensation is presented. Finally, (solid line) the Bode plot of the

proposed repetitive scheme (6` ± 1)ω0 (` = 0, 1, 2, 3, ...,∞) after the introduction

of the LPF and after enabling the proposed ∆τd-compensation is presented. The

previous results were obtained for f0=60 Hz, K1 = 0.75 and K2 = 0.8. It can be

observed that the Bode plot after the ∆τd-compensation (solid line) follows very

close the Bode plot of the controller without the use of a LPF (dashed line), which is

the target of the proposed compensation.

Figure 3.7 shows the Nyquist plot for the proposed repetitive scheme after ∆τd-

compensation to the delay line. Square marks are placed at the resonant peaks, while

star marks are placed at the expected (6` ± 1)ω0 (` = 0, 1, 2, 3, ...,∞). As well as

for the case discussed in Chapter 2 (before ∆τd-compensation), 1 and 1’ represent

the first harmonic’s resonant peak and the first harmonic’s magnitude at (6` ± 1)ω0

respectively. 5 and 5’, 7 and 7’, 11 and 11’ and 13 and 13’, represent the resonant
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Figure 3.5: Frequency response of the repetitive scheme considering K1 = 0.75 and K2 =

0.8 : (dashed) scheme with LPF modification before ∆τd compensaion; (solid)

scheme with LPF after ∆τd compensation for the phase shift. (top) Magnitude

(y-axis dB, x-axis Hz), and (bottom) phase (y-axis deg, x-axis Hz)
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Figure 3.6: Frequency response of the repetitive scheme (6`±1)ω0 (` = 0, 1, 2, 3, ...,∞) con-

sidering gain K2 = 0.8: (dashed) before introduction of the LPF. (dotted) after

introduction of the LPF, before ∆τd compensation. (solid) after introduction of

the LPF and ∆τd compensation. (top) Magnitude (y-axis dB, x-axis Hz), and

(bottom) phase (y-axis deg, x-axis Hz)
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Figure 3.7: Nyquist plot of the 6`± 1 (` = 0, 1, 2, ...,∞), harmonic compensator with LPF

modification after ∆τd-compensation and different values for K1, K2.

peaks and the magnitudes at (6`± 1)ω0 for ` = 1, 2 respectively.

It can be observed that after the ∆τd-compensation, the phase at (6` ± 1)ω0

(` = 0, 1, 2, 3, ...,∞) has been considerably minimized since square marks are very

close to star marks.
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4. EXPERIMENTAL RESULTS

Experimental results are presented in this chapter in order to show the performance

of the proposed repetitive scheme 6` ± 1 experimentally. Experimental results show

that the performance of the proposed repetitive scheme is in accordance with the

expected theoretical results.

4.1 Physical Implementation

A digital implementation of the proposed controller has been developed in the Lab-

oratorio de Procesamiento y Calidad de la Enerǵıa for experimental test using the

commercial DSP DSP320LF2407 based card from Texas Instruments family as shown

in Figure 4.1. The input signal is provided by a signal generator as seen in Fig-

ure 4.2, with a sampling rate fixed to fs = 90 kHz. In fact, the algorithm takes

around 11 µs. In this case, the discretization of the delay line is a simple task, and

it is necessary only to guarantee a relatively large memory stack where data could

be stored to be released after the delay time. The delay time has been fixed to

τd = π/(3ω0) = 1/(6f0) = 1/360 = 2.77 ms to deal with the 6`± 1 (` = 0, 1, 2, ...,∞)

harmonics of f0 = 60 Hz 1. A discrete pure delay of the form z−d has been used

to implement the delay line in the repetitive scheme. Therefore, a space of d = 250

memory locations (16 bits each) has been reserved to produce the required delay time,

i.e., 250/90000 = 2.77 ms for a sampling frequency of 90 kHz.

The proposed repetitive scheme can also have an analog implementation where

the delay lines could be implemented using special purpose integrated circuits such as

the BBD circuits, which were thoroughly used in the music industry for reverberation

and echo effects [11].

1 For f0 = 50 Hz a delay of τd = 3.33 ms should be implemented
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Figure 4.1: Texas Instrument DSP.

Figure 4.2: Digital implementation of the proposed repetitive scheme. Signal generator

provides the input signal for the proposed repetitive scheme.
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Figure 4.3: Frequency spectrum of the proposed scheme for: (top) K = 0.9 and (bottom)

K = 0.75.

The experimental frequency response of output y(t) for the proposed compensator

with transfer function (2.16), is shown in Figure 4.3 for K=0.75 and K=0.9. The

plots show that the implemented compensator contains peaks very close to the ex-

pected values, i.e., harmonics of 60 Hz. Figure 4.4 shows the time responses to an

input sinusoidal signal with 100 mV of amplitude and 60 Hz of frequency (top). It

can be observed that the output y(t) (bottom) reaches amplitude of 950 mV, which

corresponds to 19.55 dB of gain, which is very close to that obtained theoretically

(19.59 dB). Figure 4.5 show the output for the corresponding 11th harmonic, 660 Hz.

Figure 4.6 shows the responses to an input sinusoidal signal with amplitude 1 V

and frequency 180 Hz (top), that is, at the third harmonic, which coincides with the

frequency of the notch located between peaks of 60 Hz and 300 Hz. The output y(t)

(bottom) reaches a magnitude of 100 mV which makes a gain of -20dB, which is close

to the theoretical result. Notice that, in this plot, the scale of the output signal has

been reduced to show its final shape.

4.2 Eliminating the phase shift by proposing different K1 and K2

The experimental time response of output y(t), for the proposed compensator for

transfer functions (2.16) and (3.5), is shown in Figure 4.7. The curve named “b” in
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Figure 4.4: (top) Time response y(t) (1 V/div) to (bottom) an input sinusoidal signal

u(t) (100 mV/div) with 100 mV of amplitude and 60 Hz of frequency.

Figure 4.5: (top) Time response y(t) (1 V/div) to (bottom) an input sinusoidal signal

u(t) (100 mV/div) with 100 mV of amplitude and 660 Hz of frequency.
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Figure 4.6: (top) Time response y(t) (500 mV/div) to (bottom) an input sinusoidal signal

u(t) (1 V/div) with 1 V of amplitude and 180 Hz of frequency.

the top, shows the time response to the input signal (a) with 100 mV of amplitude

and 60 Hz of frequency, and considering a K = 0.75. Drawing the input and output

plots, one over the other allows us to observe the small phase-shift caused by the

introduction of a unique K. The sketched phase shift coincides with the theoretical

phase shift result.

As previously discussed, the phase observed in the top plot is eliminated by propos-

ing different K1 and K2 based on condition (3.4). The d named curve in the bottom

plot shows the time response to an input signal (c) with 100 mV of amplitude, f0 = 60

Hz, K2 = 0.75 and K1 = 0.67. Notice that, as it was expected, the phase shift equals

zero. Moreover, the output magnitude at this frequency is slightly reduced from 11.12

dB to 9.54 dB, which coincides with the results predicted by theory.

4.3 Compensation of the phase shift caused by the introduction of

the LPF

It is proposed in Chapter 3 that for the compensation of the phase shift caused by the

introduction of the LPF, only an increment in the delay time is required. Recalling

(3.13) and by proposing f2 = 1000 Hz and f1 = 0 Hz the value ∆τd = −14.8304 µs is

obtained. This ∆τd value is equivalent to take off 3 memory spaces from the original
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Figure 4.7: (top) Time response (b) y(t) to an input sinusoidal signal u(t) with 1 V of

amplitude and 60 Hz of frequency (a) with K = 0.75. (bottom) Time response

(d) y(t) to an input sinusoidal signal u(t) with 1 V of amplitude and 60 Hz of

frequency (c), K1 = 0.67 and K2 = 0.75.

memory stack of 500 memory locations. Sampling frequency is fixed at to 88800 Hz.

Figure 4.8 shows the two time responses to an input sinusoidal signal with 100

mV of amplitude and 60 Hz of frequency. This time the first order LPF has been

introduced with a cut frequency equal to 1000 Hz. In the top, the input signal u(t) (a)

and the output response y(t) (b) are shown. It can be observed that a considerable

phase-shift of about -30 deg is introduced as predicted by theory. In the bottom, for

the same input (c), the response (d) is shown. Notice that the phase shift has been

reduced to about -3.6 degrees due to the addition of the increment ∆τd in the delay

line. In this test a K2 = 0.9 and K1 = 0.88 were chosen.

A similar experiment as before, considering this time an input signal of 300 Hz

is presented in Figure 4.9. This figure shows the two time responses to an input

sinusoidal signal with 100 mV of amplitude and 300 Hz of frequency. In the top, the

input signal u(t) (a) and the output response y(t) (b) are shown. As before a first

order LPF has been introduced with a cut-off frequency equal to 1000 Hz. It can be

observed that a considerable phase shift of about -57.6 deg is obtained as predicted

by theory. And in the bottom, it can be observed that after the introduction of ∆τd

in the delay line the phase shift is minimized to -2.8 degrees. In both cases K1 = 0.88

and K2 = 0.9 is considered.
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Figure 4.8: (top) Time response (a) y(t) to an input sinusoidal signal u(t) with 1 V of

amplitude and 60 Hz of frequency (b) with K2 = 0.9 before ∆τd-compensation.

(bottom) Time response (c) y(t) to an input sinusoidal signal u(t) with 1 V

of amplitude and 60 Hz of frequency (d), K1 = 0.88 and K2 = 0.9 after ∆τd-

compensation.

Figure 4.9: (top) Time response (b) y(t) to an input sinusoidal signal u(t) with 1 V of

amplitude and 300 Hz of frequency (a) with K2 = 0.9 before ∆τd compensation.

(bottom) Time response (d) y(t) to an input sinusoidal signal u(t) with 1 V

of amplitude and 300 Hz of frequency (c), K1 = 0.88 and K2 = 0.9 after ∆τd

compensation.
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Figure 4.10: Comparison of the proposed repetitive scheme phase shift with LPF modifica-

tion (bottom plot) before and (top plot) after ∆τd-compensation for K1 = 0.88

and K2 = 0.9.

Figure 4.10 presents comparison of experimental and theoretical results of the

proposed repetitive scheme before and after the ∆τd-compensation. In the top plot

(dashed line) the phase shift after the ∆τd-compensation obtained experimentally is

presented. In the top plot (solid line) the phase shift after the ∆τd-compensation

obtained theoretically is shown. In the bottom plot (dashed line) the phase shift

before ∆τd compensation obtained experimentally is presented as well as the phase

shift before ∆τd compensation obtained theoretically (solid line). It is observed that

theoretical values are very close to the experimental values. A considerable reduction

of phase shift at 6`± 1 (` = 0, 1, 2, ...,∞) harmonics after the ∆τd-compensation can

be also observed from this comparison.
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In this thesis work a repetitive scheme intended for compensation of harmonics 6`±1

(` = 0, 1, 2, ...,∞) of the fundamental frequency ω0 was presented. The idea behind

the derivation of this scheme consisted in the nesting of a positive feedback repetitive

scheme to a synchronous frame rotating at frequency ω0.

The positive feedback scheme (also well known as hyperbolic cotangent) was de-

signed to produce an infinite set of resonance peaks tuned at frequencies 6`ω0, which

after the frequency shifting associated with rotations in a synchronous frame, pro-

duced resonance peaks of infinite gains at frequencies (6`± 1)ω0 (` = 0, 1, 2, ...,∞).

A considerable reduced expression was also obtained for the proposed repetitive

scheme by applying the shifting frequency properties. The proposed repetitive scheme

involved two delay lines (owning the same delay time), which were arranged in two

feedback loops plus a feedforward path.

It was shown that after adding a damping gain to the proposed repetitive scheme a

finite gain at the resonant peaks was obtained. As a consequence of this modification

a slight phase shift appeared. To eliminate the phase shift at the resonant peaks, it

was proposed to use two different damping gains, one for each delay line, namely, K1

and K2, and a mathematical relation between K1 and K2 was found to guarantee a

zero phase shift.

It was also shown that the proposed repetitive scheme was passive and that after

the damping gain modification it became strictly passive.

Introduction of a LPF to the repetitive scheme was recommended to get rid of

frequency sample noise during the digital implementation. This modification caused

an important phase shift at resonant peaks. To overcome this issue a compensation

strategy was proposed. It consisted in the introduction of an increment ε in the delay
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time of each delay line.

Experimental results were shown that proved the capabilities of the proposed

repetitive scheme as well as its performance after damping gain and LPF modification.

5.1 Future work

In this thesis work the passivity properties of the proposed repetitive scheme were

presented. These passivity properties were obtained for the regular (6` ± 1)ω0 (` =

0, 1, 2, ...,∞) scheme and the (6` ± 1)ω0 (` = 0, 1, 2, ...,∞) scheme after damping

gain modification (introduction of gain K). For future work, study of the repetitive

scheme passivity properties after damping gain modification involving K1 and K2 is

proposed.

The study of the repetitive scheme passivity properties after LPF modification is

also left for future investigation. In this work it was observed that the Nyquist plot

of the proposed repetitive scheme was on the right hand side of the complex plane,

nevertheless a formal proof is needed to settle down the modified scheme passivity

properties.



6. APPENDIX A

According to Figure 2.2 output Y is given by

y = ρT
`

∫ t

0

[
h(τ) 0

0 h(τ)

]
ρ`u(t− τ)dτ

=

∫ t

0

ρT
`

[
h(τ) 0

0 h(τ)

]
ρ`(t− τ)u(t− τ)dτ

=

∫ t

0

h(τ) cos(ω0τ)u(t− τ)dτ

Notice that, this convolution function describes systems with impulse response

given by

σ(t) = h(τ) cos(`ω0t) (6.1)

and input u. In what follows the following frequency shifting property of the Laplace

transform is used.

L(h(τ) cos(`ω0t)) =
1

2
H(s− `ω0t) +

1

2
H(s + `ω0t) (6.2)

Where H(s) = L{h(t)} and j =
√−1. Therefore in the frequency domain, that

is, applying the Laplace transform, using the preceding property, the following result

is obtained

Y (s) = Σ(p)U

where Σ(s) = 1
2
H(s− `ω0t) + 1

2
H(s + `ω0t) and U = L{u}.
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7. APPENDIX B

According to Figure 2.3, the positive sequence component of the output Yαβ is given

by

yp
αβ = eJ`ω0t

∫ t

0

[
h(τ) 0

0 h(τ)

]
e−J`ω0tuαβ(t− τ)dτ

=

∫ t

0

eJ`ω0t

[
h(τ) 0

0 h(τ)

]
e−J`ω0tuαβ(t− τ)dτ

=

∫ t

0

[
h(τ) 0

0 h(τ)

]
eJ`ω0(τ)uαβ(t− τ)dτ

=

∫ t

0

[
h(τ) cos(ω0τ) −h(τ) sin(ω0τ)

h(τ) sin(ω0τ) h(τ) cos(ω0τ)

]
uαβ(t− τ)dτ

eJ`ω0t =

[
cos(`ω0t) − sin(`ω0t)

sin(`ω0t) cos(`ω0t)

]
(7.1)

while the negative sequence component of the output Y n
αβ is given by

yn
αβ =

∫ t

0

[
h(τ) 0

0 h(τ)

]
e−J`ω0(τ)uαβ(t− τ)dτ

=

∫ t

0

[
h(τ) cos(ω0τ) h(τ) sin(ω0τ)

−h(τ) sin(ω0τ) h(τ) cos(ω0τ)

]
uαβ(t− τ)dτ

The total output Yαβ is composed of the sum of both sequence components, that
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is

Yαβ = yn
αβ + yp

αβ

=

∫ t

0

[
2h(τ) cos(ω0τ) 0

0 2h(τ) cos(ω0τ)

]
uαβ(t− τ)dτ

Therefore, each coordinate of the output, yα and yβ, is described by

yα = 2

∫ t

0

h(τ) cos(ω0τ)uα(t− τ)dτ

yβ = 2

∫ t

0

h(τ) cos(ω0τ)uα(t− τ)dτ

Notice that, this convolution function describes systems with impulse response

given by

σ(t) = h(τ) cos(`ω0t) (7.2)

and input uα and uβ, respectively. In what follows the following frequency shifting

property of the Laplace transform is used.

L{h(τ) cos(`ω0t)} =
1

2
H(s− `ω0t) +

1

2
H(s + `ω0t) (7.3)

Where H(s) = L (h(t)) and j =
√−1. Therefore in the frequency domain, that

is, applying the Laplace transform, using the preceding property, the following result

is obtained

Yαβ(s) =

[
2Σ(s) 0

0 2Σ(s)

]
Uαβ(s)

where Σ(s) = L {σ(t)} and U = L {uαβ}.
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