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Abstract. We present a method for stabilization of a class of nonlinear
systems. The notion of stability preservation is exploited to prove that
a transformation allows to find a stabilizer. The nonlinear systems have
uncontrollable linearized system. From this fact, we propose a method
that departs from a controllable linearized system to a linear transforma-
tion. The linear transformation allows to take the uncontrolled system
_preserving the stability properties of the controlled one. Thus, the re-
sulting controller is able to stabilize biomedical systems. Type I diabetes
mellitus and HIV-I diseases are used to show the potential of method.
Numerical simulations for this cases illustrate the performance of closed-
loop approach. :
Keywords: Stability Preservatlon, Stabilization, Biomedical Systerns

1 Introduction

Stabilization of an equilibrium point is a classi®al and common problem in con-
trol theory. The stabilization of nonlinear systerms is still a problem under study
dnd investigation. The stabilization of dynamical systems is used in several re-
arch areas, for instance, in control of manipulators, mechanical systems, chaos
nchronization and more recently in biomedical systems or complex networks.
he stabilization of nonlinear systems has been studied using various theories
ith some promising results, see [1],[2],[3] and references therein. In [1], the au-
jor proposed a method to find a stabilizing control law for feedback output. A
ng assumption is stated about the system has to be at least weakly detectable
onstruet a state estimator. Then a stabilizer is derived. If this controller sta-
7es the estimated system, it stabilizes the original system. On the other hand,
hors in [2], extended the Q-parametrization theorem but for nonlinear sys-
3. They assumed that the closed-loop system is well-posed and as the system
t P is stable or incrementally stable, then the closed-loop system is stable
Hd only if there exists a stable matrix @ such that the controller is given by
Q(I — PQ)~! for some stable Q. This result requires that the nonlinear
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plant be strongly stabilizable in order to a compensator be determined. Finally,
authors in [3], proposed a linearization at origin. Then, studying the resulting
linear matrix (which has uncontrollable modes), they performed the stabilization
analyzing the properties of a center manifold and normal forms. Behtash and
Sastry [3] considered the case when the linearized part has uncontrollable modes
on the imaginary axis. Compared with the previous results, we are interested in
stabilizing equilibrium for a class of biomedical systems that presents unstable
modes. Our proposal neither ask for weakly detectabillity of the system nor uses
an state estimator; it is not required that the plant be strongly stabilizable; as
an additional contribution the class of systems studied has not only models at
the imaginary axis. But modes with positive real component.

Our proposed method is used on biomedical systems. The biomedical sys-
tems are of relevant interest in the scientific community, Type I diabetes mellitus
(TIDM) and Type I Human Immunodeficiency Virus (HIV-I). TIDM is a chronic
disease characterized by self destruction of pancreatic cells which are responsi-
ble of insulin secretion. In absence of insulin, blood glucose levels in patient are
increased up-to 200 mg/dl. This last provoke hyperglycemia which carries out
several illnesses, among others atherosclerosis, retinopathy,etc.In order to reg-
ulate blood glucose, in TIDM external doses of insulin are necessary. Hence, a
closed-loop of the blood glucose level is the best strategy to maintain it regulated
in permitted values. To this aim, a controller that calculate this external doses
of insulin must be synthesized [4]. By other hand, HIV-I infection is a disease
that provoke thousand of deaths last three decades. Over the last two decades
tremendous effort has been applied to the mathematical modeling of the epidemi-
ology and immunology dynamics of HIV. There are several approaches to the
modeling of the infectious diseases at the cellular level to describe the immune
system and the hostpathogen interaction. These models describe the dynamics
between white blood cells (CD4+ T cells),the infected cells and concentration of
free virion [5). The idea here is quite similar than in TIDM, this is, synthesized
a feedback-controller in order to stabilizes the propagation of concentration of
free virion to avoid the infection od CD4+T cells.

Our proposal consists in finding a transformation from a controllable nonlin-
ear system [6]; which we refer to as CS. For CS system, we calculate a stabilizing
controller, which makes stahle the linear part of the system. The next step is to
propose the same controller with system having UMS via a transformation of
the linear part of the unstable system. Thus, this procedure consists in finding
an invertible transformation for the linear part of the system with UMS, such
that it is equal under the transformation to the linear part of CS. Therefore, the
system with. UMS is stabilizable via a controller containing the transformation.
In this sense we say that the stability of CS is preserved and exploited to sta-
bilize system with UMS. This can be seen like a stabilizability condition for the
UMS provided that there exists a stable systern from where preservation of sta~
bility is claimed. We illustrate the result in two well known biomedical systems,
departing from an other well known dynamical systems which is stabilizable via
a simple controller.
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2 Problem Formulation

The class of biomedical systems considered for stabilization are given by the the
TIDM

G =-X(G+Gp)+p(t)

X. = —poX 4 pgl - 1)
I=-n(I+Ip)
yp=G

this system has three modes given by Arrpa = {0,-0.025,—0.0926} for the
system parameters Gg = 4.5,p2 = 0.025, p3 = 1.3000 x 103, n = 0.0926, note
that one of the modes is unstable. On the other hand, the HIV-I infection system
is given by the following set of equations

T=s—dT - bTV

Ti_p =TV - Tip )
V = Ty — 2V
YH = T-— s/d

this system has three modes given by Agry = {—0.007,0.5589, —0.8589} with
parameter values s = 7.0,d = 0.007,b = 4 x 1075,y = 0.3, 0 = 0.6,9 = 75
the system (2) has one unstable mode. A natural approach to control this class
of systems is the geometrical nonlinear control theory [6], [7]. To verify if both
systems can be controlled we determine the relative degree. The relative degree
involves the reachability and detectability for nonlinear systems. It is said that
a system & = f(z) + g(u)u with output y = h(z) has relative degree p at z° if
(1) LgL4h(x) = 0, for k < p—1, and for all = in the neighborhood of 2% (ii)
LgL?"lh(zo) # 0. Therefore from this condition if function in (ii) is well defined
then the system is reachable and detectable and there exists a control law that
controls the system at the point z°. The relative degree for the system (1) is
p =3 and has the relative degree function LyL3h(z%) = ~GpP3 = 5.85 x 1073
note that this value depends only on the parameters and does not depend on
the system states, this is, it is always constant. Moreover, the value is closed to
zero, this means that the relative degree id*hot well defined practically, since the
control law is as u = —gp- (—L?h(z) + u). In this sense the control action
presents an excessive overshoot and is undesirable for this class of biomedical
systems. For the system (2), the case is almost the same, the relative degree is
p =3 and the function L,L3h(z°) = bTg = 3 x 107*T. In this case the relative
degree function depends on one state, again the control law is not well defined
practically, leading a high overshoot. In-this sense, the geometric approach is
not recommended to stabilize thls B of biomedical systems.

To overcome this problem we ‘propose the stabilization of the nonlinear sys-
tem considering the stabilization of the linear part of the linearization, provided
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that the nonlinear terms be at least locally Lipschitz. To this end, the problen
can be formulated as follows. Let us consider systems that can be written as

Ty = AuTy + Do) 3

Yu = CuTy ’
where the subscript » and s stand for the unstable and stable characteristic
respectively, =, € R™ is the system state vector, A, € R™*" is the Jacobian un-
stable matrix for the linearization, @, : R® — R” is a smooth vector field which
comprises the nonlinear terms, C, € R1*” defines the system output state and
ug : R® — R is a stabilizing controller, which should determined provided that
does it exist, the subscript u stands for the unstable characteristic.

The preservation stability objective is to keep intact the stability properties
of a system stabilized with a linear controller u; = Ky, such that the system
(3), with unstable matrikx Ay, is stabilized as well. This is, we design a u; able
to lead the trajectories of the system distinct to (3) to lead trajectories z, to
neighborhood of the equilibrium,; i.e., || = ||< & for some Euclidean norm and the
small § > 0 stands for the neighborhood radius.

3 Stability preservation to stabilization

We focus our attention on the class of systems with uncontrollable linearization
(3). To begin with, let us consider that there exists a system which is detectable
and reachable (controllable and observable) via the control command us = K,y

s = Azs + Ps(zs) + Bsus )
= Cyxs

where the closed-loop matrix A, = (A+ B,K,Cs), 4, € R™", B, € R,
P, € R™ note that A # Ay, Bs # By, 95 # &, and C; # C,. Thereafter, to
investigate stabilizability for system (3) let us consider the following proposition.

Proposition 1. Let z; and z;, be equilibrium points for the nonlinear sys-
tems &; = Fy(x;s) and &, = F,(z), respectively, where F; : D; — R" and
F, : D, — R™ are cofitinuously differentiable vector fields and D,, D, C R" are
neighborhoods of the origin. Let

= 3:: 9F(z,), Ay = QE“((B,‘) . (%)

be the Jacobian matrices of CS and system with UMS, respectwely Consider
the following decomposition . -

s = Fo(xs) = (A + BsKC;) x5 + Ds(xs) ©)
u = Fu(zu) = Az, + Qu(zu)

with continuously differentiable vector fields &, : D; — R™ and &, : D, — R".
Suppose that there exists a transformation T : R®*™ — R™*" such that preserves
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eigenvalues of (4 + B;K,C;) with negative real part and T {(4s + B;K,C,)} =
A,, then the origin of the nonlinear system &, = F,(z,,) is asymptotically stable
if ReX;, < O for all eigenvalue of (A + B,K;C;) and &, continuously differen-
tiable such that ﬂ%(%ll — 0 as [|zy]l2 — z&. The proof of this statement has

been reported in [8]. :

The main idea in the above Proposition is to find the transformation T =
Ay(A+B;K,C;)~1. In this way, it is possible to find a transformation which pre-
serves stability of the system (4). Afterwards, a family of stabilizing controllers
u; for system (3) can be calculated based on the existence of the transformation
T. To this end, let us assume that there exists the matrix (4 + B,K,C,)"" and
we can write the system (3) as follows.

_T(_A—{-B K C_g)-’L'u, +Buus+¢u(zﬂ)
_{T(A+BKC)+BKC}zu+¢($u) ™
yu,_Cu.-Tu )

From this system it is possible to assign the closed-loop system poles, provided
that Re); < 0 where \; are the aigenvalues of {T (A+B K,C,) + ByK,Cy}

.and "Q" 22 — 0 as |lzyll2 — =3

4 Stabilization of biomedical systems

In order to illustrate the stabilization of a class of biomedical system, let us con-
sider a nonlinear system as CS, i.e., its linear part is controllable and observable.
The CS is given by the Rossler equation

I, = —(.‘1:2 +.‘L‘3)
Ly = 11 + dT2 (8)
.‘1';‘3 =b+:1:3(:1:1——c)+u

y=Cszy.

Notice that the Rossler system has no biomedical interpretation. This fact in-

tentionally used to exaggerate the ifferences between CS and the system with

UMS. The system (8)is stabilizable via the feedback us; = K;C,z1, moreover,

it can be written as & = A,z + J,(x) and the matrix A, has eigenvalues with

negative real parts. The method is implemented to two well-known biomedical .
systems, which are presented next.

4.1 Type I Diabetes Mellitus

The Type I Diabetes Mellitus (TIDM) is an immunologic disease characterized
by the self-destruction of the pancreatic .3-cells implying the lost of the pancre-
atic insulin secretion. A direk_:t consequence of TIDM is the hyperglycemia, which
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is defined as a blood glucose concentration above 120 mg/dl, the hyperglycemia
causes diverse consequences, among others, polyuria, thirst, dehydration and
slimming. ’

In absence of an insulin therapy, these facts can lead the patient to intense
metabolic ketoacidosis and, possibly, to the death [9]. Due to the illness effects,
the principal objective of the (traditional) TIDM therapy consists to avoid the
long-terms hyperglycemic periods via exogenous insulin infusion, which is usu-
ally injected after a carbohydrate ingesta. Nevertheless, some results show that
even if the traditional therapy is prescribed to a patient, diverse complications
can arise. Hence, the need of automatic controllers including delivery devices is
imperative. Because of this need, the control community has begun the study of
the blood glucose regulation as a control problem via feedback. The incursions
have provided feedback controllers to compute the insulin amount required to
avoid long-term hyperglycemic conditions from fuzzy logic [13], predictive-model
algorithms [14] and Hy, theory [4].

Now, we consider the dynamical system for the TIDM given (1)

G = -X(G+Gg) +p(t)
= —pe X + p3l
I=—n({I+Is) ®
yp=G

Note diabetes model has no control input. As was discuss above this model has
a zero mode, therefore this is a candidate to be stabilized via the preservation
of stability using system (8). We look for a transformation T, from matrices 4,
and A, which are given by :

0 -1 -1
4;,=11 a O (10)
K 0 - :
0 -Gg 0 .
* Ay=|0 -p2 p3 (11)
0 0 —-n

which are respectively derived from Rdssler system and system (1). From these .

matrices we can compute a transformation which preserves stability as stated in 3

Proposition 1 as T(A, + B,K;C;) = A,, this means that there exists a matrix
T such that 4, = T(4, + B;K,C;) from where we have

1 —GBC —GBKS GB

Ksa—c

T —p2c —psKea —p2Ks—p3K, po+ps | - (12)

nKsa nK, -n
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At this point we can found a value for the stabilizing control gain K, such that
Re)i {T (A + B;K,C;) + BuKyCy} < 0.

Glucose (mg/dl)
]

8

3

Insulin (mU/min)
R8s 3

-
S

300 400
Time (min)

Fig. 1. Synchronization of the network in a chaotic attractor.

order to show stabilization via stability preservation of diabetes system,
following parameter were chosen Gp = 4.5,p; = 0.025,ps = 1.3000 x
,n = 0.0926 for the Diabetes model and a = 0.2,b = 0.2,¢ = 5.7 for
' Rossler system. The result is shown in Figure 1, controller was activated
100. Figure 1(a) illustrates the stabilization of the Glucose level at the
nt G* = 100mg/dl. Figure 1(b) is the control action, it is the insulin rate to
teract the glucose level. '

.

HIV-I disease .

een infection with the virus and the onset of AIDS in adults. The reason
is time lag remains largely unknown, although it seems tied to changes in
umber of circulating CD4t+ T cells. The major target of HIV-I infection
lass of lymphocytes, or white blood cells, known as CD4*+ T cells. These
secrete growth and differentiation factors that are required by other cell
lations in the immune system, and hence these cells are also called ”helper
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T cells”. When the CD4% T cell count, which is normally around 1000 mm™3,
reaches 200 mm™3 or below in an HIV-I infected patient, then that person is
classified as having AIDS. Because of the central role of CD4% T cells in immune
regulation, their depletion has widespread deleterious effects on the functioning
of the immune system as a whole and leads to the immunodeficiency that char-
acterizes AIDS [5].

The model for the HIV-I infection is given by the following set of equations

T =s—dT —bTV

Ty =0TV — . '

] 13

V = gTp — p2V (12)
=Ty

where T represents the uninfected lymphocytes CD4%, T;,, are the infected
lymphocytes CD4* and V represent the virus, for more details see [5] and [15].
As in diabetes case, the system (13) has no control input. Parameter values were
considered as s = 8, d = 0.008, b = 0.000004, g = 0.3, pg == 0.6 and g = 75,
with initial conditions 7°(0) = 1000cells/mm?3, T;,(0) = 0 and V(0) = 0.

The reason for the fall in the T cell count is unknown as the processes that
determine the rate of fall. T cells are normally replenished in the body, and the
infection may affect the source of new T cells or the homeostatic processes that
control T cell humbers in the body. Although HIV can kill cells that it produc-
tively infects, only a small fraction of CD4* T cells are productively infected at
any one time. Thus, in addition to direct killing of T cells, HIV may have many
indirect effects [5].

The. antiretroviral pharmacs available for clinic purposes acts basically by
means of two mechanisms: (i) Stoping the infection of new health cells (inhibers
of reverse transcriptase) and (ii) Generating defective viral copies without in-
fection capacity (inhibers of protease). The main objective of these pharmacs
is to diminish the popalation of infected cells Ti, produced by infectious viral
copies. A strategy used to simulate the antiretroviral drug effects, consists in
apply a parameter or control function which affects directly the constant rate of
infection health cells in this case the parameter b in (13).

Thus following the stability -preservation method we have that the linear
part for the system (13) is

210 o0 o
Av=|0 —m o0 (14)
0 g -—p : :
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from where the transformation T is given by

ac (o4 —a
T= —ciy —HK sty M1 (15)
gc+apeKs gK + poKs  —g — pia

which can be used to attain the stabilization of HIV system provided that
Rel; < 0, ); are the eigenvalues of T(A + B;K,Cs)

-
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Fig. 2. Synchronization of the network in a chaotic attractor.

Figure 2 illustrates the stabilization at the origin of the infected cells T3;, and’
therefore the virus is leaded to the origin. In this case the system parameters
were chosen as 8 = 7.0,d = 0.007,b = 4 x 10~%, yi; = 0.3, yo = 0.6,g = 75. The
control gain k = 3 and was activated at ¢ = 400Hrs. Figure 2 Illustrates the
stabilization of the virus V' and the*infected cells T3, therefore, the uninfected
cells T tends to the noninfectious level.

5 Conclusions

In this work, we present an alternative method to stabilize a particular class
of biomedical systems. The method consists in, departing from a controllable
system, proposing an invertible transformation. The transformation exploits the -
- stable properties of a controllable system to stabilizé a nonlinear system with
UMS. The utility of the method was illustrated using the HIV-I and the TIDM
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model, in both cases the systems were stabilized at an operation point given
by a healthy person. The present method is simple since it mainly consists in
determine an invertible transformation from the uncontrollable system to the
controllable. As example, the Réssler system is chosen to show the stability
preservation even if differences between CS and unstable nonlinear system are
exaggereted. This result can be extended to more complex and general systems
however results in this directions are under study.
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