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Abstract

The transverse function approach to control provides a unified setting to deal with practical sta-
bilization and tracking of arbitrary trajectories for controllable driftless systems. Controllers derived
from that approach offer advantages over those based on more classical techniques for control of
nonholonomic systems. Nevertheless, its extension to more general classes, such as critical under-
actuated mechanical systems, is not immediate. The present paper explores a possible extension
by developing a framework that allows one to cast point stabilization problems for (left-invariant)
second-order systems on Lie groups, including simple mechanical systems. The approach is based on
“vertical transversality,” a property exhibited by the derivative of transverse functions. In this paper
we lay out the theoretical foundations of our approach and present an example to illustrate some of
its features.

1 Introduction

The transverse function approach (TFA) is a recent approach to solve stabilization and tracking problems
for a wide class of control systems, including driftless (“nonholonomic”) systems which are typically
critical in that they do not satisfy Brockett’s stabilizability condition [13, 14, 15]. More recently, the
approach has been partially extended to an even larger class, including critical underactuated mechanical
systems [16, 11, 17]. As originally introduced, the approach addresses the control of systems

ẋ = X0(t, x) +

m∑

i=1

uiXi(x), (1)

where X0(t, · ), X1, . . . , Xm denote smooth vector fields on an n-dimensional, smooth manifold M , un-
der the assumption that the Lie algebra Lie(X), generated by the set of control vector fields X =
{X1, . . . , Xm}, spans TpM at some point p in M (i.e., X satisfies the Lie algebra rank condition, LARC,
at p). Systems of the form (1) comprise controllable driftless systems with (possibly null) time-varying
disturbances, which may represent model uncertainties or terms that typically arise in trajectory tracking
problems. Among other virtues, the feedback laws obtained via the TFA allow one to tackle difficulties
linked to the control of “critical” systems, that is, systems that do not satisfy Brockett’s stabilizability
conditions, or generalizations thereof. In particular, those feedback laws address the problems of sta-
bilization of equilibria and of more general trajectories by trading convergence to the desired value for
convergence to a given neighborhood of that value, settling for practical, instead of asymptotic stability.
This trade-off is in accordance with results in [9], where it is pointed out that constructing “universal”
controllers that asymptotically stabilize arbitrary system trajectories is a hopeless goal for some classes
of systems subject to nonholonomic constraints. Under appropriate conditions, the feedback laws de-
rived using the TFA also ensure practical stabilization of non-feasible trajectories and, moreover, they
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are smooth, so they do not exhibit some of the nonrobustness issues alluded to in [10]. Along with its
applications, the original formulation of the TFA has been generalized in several directions. For example,
in [15], the approach was enhanced to yield controllers that guarantee asymptotic stabilization to a point
whenever the drift vector field X0 allows it. In, [14], the TFA and the constructive algorithm to define
the transverse functions was refined for the particular case of driftless systems defined on Lie groups.
More recently, in order to incorporate a larger class of systems, including critical underactuated mechan-
ical systems (in particular those that are not kinematic in the sense of [7]), two approaches have been
independently developed. The first one, initially introduced in [16] and further advanced in [17], cleverly
uses transverse functions in a construction which guarantees practical stabilization of the configuration
variables (“positions and orientations”), and even convergence of the velocities to zero provided the drift
vector field so allows it. The second approach, introduced in [11], makes use of transverse functions in
a significantly different way as compared to the first one. Although, for the time being, the approach
developed in [16, 17] seems to be more promising to yield practical stabilization and tracking results, the
one in [11] provides an alternative which we explore in more detail in the present paper. More specifi-
cally, we introduce a framework that allows one to formulate practical point-stabilization problems for
second-order systems, in particular those defined on (tangent) Lie groups. Some examples of these in-
clude underactuated manipulators, blimp-like systems and underwater vehicles. Our methodology builds
upon two main ingredients, the first of which is the observation that the tangent mapping Tf of ev-
ery transverse function f as defined in [13], satisfies what we call vertical transversality. The second
ingredient is the adjunction, to the system being controlled, of an auxiliary control system—a dynamic
extension—which evolves on the domain of Tf . An error signal is defined to measure the difference
between the state of the controlled system and the image by Tf of the state of the auxiliary system. The
two ingredients are related by the fact that the vertical transversality of Tf endows one with full control
over the second-order time-derivatives of the error signal, thus allowing one to enforce a dynamics for
which the error vanishes asymptotically under appropriate conditions. The latter, however, are not nec-
essarily satisfied in a number of practical situations; instead, for every given application, a zero-dynamics
analysis is required to establish the long-term behavior of the controlled system. This issue motivates the
search for conditions to guarantee that the asymptotic behavior of the solutions is acceptable. In its full
generality, this remains an open problem; however, in the case of systems underactuated by one control,
necessary and sufficient conditions for the existence of solutions and for the boundedness of their velocity
coordinates are stated below.

The paper is organized as follows. In Section 2 we recall basic concepts needed to establish our
results, while in Section 3 we recall, from [13], the construction of transverse functions for driftless
systems. In Section 4 we single out the notion of vertically transverse function. Our approach to cast
point-stabilization problems for second-order systems is outlined in Section 5, where additional results are
stated regarding the nature of the zero-dynamics and some stability properties of the resulting system. In
Section 6 we work out an example and in Section 7 we include concluding remarks. Finally, the Appendix
in Section 8 contains some lemmas and the more technical proofs.

2 Preliminary notions

2.1 Basic concepts

We recall standard notions from differential geometry mainly to fix notations (cf. e.g. [1] or [19]). Given
a smooth (Hausdorff, paracompact) manifold Q, and its first and second tangent bundles TQ and TTQ,
we let πQ : TQ −→ Q and πTQ : TTQ −→ TQ denote their respective tangent bundle projections. The
tangent space to Q at a point q ∈ Q is denoted by TqQ. Given smooth manifolds Q,P and a mapping
f : Q −→ P , we write Tqf : TqQ −→ Tf(q)P for the tangent mapping of f at q and Tf for the respective
bundle map covering f . If base point q is clear from the context, we usually write Tf(v) instead of Tqf(v).
The sets of smooth vector fields on Q and on TQ will be denoted by Γ(TQ) and Γ(TTQ), respectively,
and C∞(Q) denotes the R-algebra of smooth, real-valued functions on Q. For simplicity we frequently
write Xq instead of X(q) for the value of a vector field X at a point q. A coordinate chart on Q is a pair
(U, (q1, . . . , qn)), also written (U, q) for conciseness, with U open in Q and q = (q1, . . . , qn) : U −→ R

n a
homeomorphism. Any chart (U, q) on Q determines, in a natural way (cf. e.g. [19, §1.25]), charts on TQ



CONTROL BASED ON VERTICAL TRANSVERSALITY 3

and, in turn, on TTQ. The coordinates corresponding to those charts will usually be denoted by (q, q̇)
and (q, q̇, αL, αH), respectively, and referred to as natural coordinates (induced by (U, q)) on TQ and
TTQ, respectively. We shall write r = (r1, . . . , rn) for the canonical coordinates on R

n. In what follows
it is assumed, unless otherwise specified, that manifolds (including Lie groups) are finite-dimensional,
connected and smooth (i.e., of class C∞), and that mappings on manifolds are smooth.

2.2 Second-order, vertical and related constructs

The concepts recalled in this section occur less frequently in the literature; for more details on those
notions the reader may wish to consult e.g. [1, 12, 2]. A vector field X ∈ Γ(TTQ) is said to be a second-
order vector field (one also says that “X defines a second-order equation on Q” or simply that “X is
second order”) if TπQ ◦X = idTQ. In natural coordinates, X ∈ Γ(TTQ) is second-order if, and only if,
it is of the form X(q, q̇) = (q, q̇, q̇, XH(q, q̇)). This definition extends naturally to vector fields along a
curve in TQ, namely, if X is defined on the image of a curve γ : (t0, t1) −→ TQ (for example, if X is the
vector field tangent to γ so that Xγ(t) = Ttγ (∂/∂r|t)) then X is said to be second-order along γ if for
every t ∈ (t0, t1), TπQ(Xγ(t)) = γ(t). Associated with any such curve γ is the corresponding base curve
πQ ◦ γ : (t0, t1) −→ Q. Given v ∈ TQ, the vertical space over v is ker(TvπQ), a subspace of TvTQ
which we denote by TvTQ

vert and whose elements are said to be vertical (tangent) vectors. In natural
coordinates, α is vertical in T(q,q̇)TQ if, and only if, it is of the form α = (q, q̇, 0, αH). The disjoint union
of vertical spaces over points in TQ inherits a natural structure that makes it a vector subbundle of TTQ,
called the vertical subbundle TTQvert. A section X ∈ Γ(TTQvert) of this subbundle is called a vertical
vector field. Given tangent vectors v, w ∈ TQ such that πQ(v) = πQ(w), one defines the vertical
lift of w by v as the vector in TvTQ given by lift(v, w) = T0γv,w (∂/∂r|0), where γv,w : R −→ TQ
is the curve determined by γv,w(t) = v + tw. (This choice of notation should not cause any confusion,
since the related notion of horizontal lift is not used in this paper.) Given a vector field X ∈ Γ(TQ),
the vertical lift of X is the vector field X lift ∈ Γ(TTQ) defined by X lift

v = lift(v,XπQ(v)). In natural

coordinates, if X(q) = (q, X̂(q)) then X lift(q, q̇) = (q, q̇, 0, X̂(q)). System (1), under the assumption that
X0(t, · ), X1, . . . , Xm ∈ Γ(TTQ) for all t ∈ R, is said to be a second-order (control-affine) system
on TQ if X0(t, · ) +

∑m
i=1 u

iXi is a second-order vector field for every u = (u1, . . . , um) ∈ R
m and

every t ∈ R. One easily checks that if (1) is second order, then X0(t, · ) is itself second order for every
t ∈ R, and the vector fields X1, . . . , Xm are vertical. The Liouville vector field associated with Q
is the vector field C ∈ Γ(TTQ) given by Cv = lift(v, v) (we also write CQ to emphasize the associated
manifold Q). A vector field S ∈ Γ(TTQ) is said to be a spray if S is second order and [C, S] = S. In
natural coordinates, C(q, q̇) = (q, q̇, 0, q̇), and X ∈ Γ(TTQ) is a spray if, and only if, X is of the form
X(q, q̇) = (q, q̇, q̇, XH(q, q̇)) and the components of XH are quadratic on the coordinates q̇.

2.3 Tangent Lie groups

Given an n-dimensional Lie group G, we consider its associated tangent group TG (cf. [12, Chap. 9])
with Lie group structure determined by the multiplication µ : TG× TG −→ TG given by

µ(v, w) = T L̂πG(v)(w) + T R̂πG(w)(v), (2)

where L̂g : h 7→ gh and R̂g : h 7→ hg denote left and right translations on G, respectively. In the sequel,
we also write vw instead of µ(v, w). Endowed with this structure, TG admits 0e (the zero vector in TeG)
as identity element. In the sequel, when both a Lie group G and its tangent group TG are involved in a
discussion, we systematically use R̂, L̂ to denote translations on G, and R,L to represent translations on
TG. If g : (t0, t1) −→ G is a curve on a Lie group G, we denote by g−1 : (t0, t1) −→ G the curve defined
by t 7→ (g(t))−1.

3 Transverse functions for driftless systems

In this section we recall the results of [13] on the existence and construction of transverse functions for
driftless systems. Consider a set of vector fields X = {X1, . . . , Xm} ⊂ Γ(TQ) and a point p ∈ Q such
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that {Yp : Y ∈ Lie(X)} = TpQ. It follows from [13, Thm. 1] that, given a neighborhood U of p, there
exist an integer κ ≥ n − m and a transverse function f : T

κ −→ Q that satisfies f(Tκ) ⊂ U and, for
every θ ∈ T

κ,

Tf(θ)Q = Tf(TθT
κ) + span

R
{X1,f(θ), . . . , Xm,f(θ)}, (3)

where T
κ denotes the κ-torus (R/2πZ)κ. In the sequel we shall refer to any such mapping as Morin–

Samson transverse function for X (near p). Note that, while in general the sum in (3) is not
direct, i.e., κ need not equal n−m, in some cases f can be chosen so that it is, for instance when Q = G
is an n-dimensional Lie group and the vector fields X1, . . . , Xm are left-invariant. In the latter case,
the explicit construction in [14] of a transverse function can be detailed as follows. Let ξ1, . . . , ξm be
elements of g, the Lie algebra of G, such that Lie({ξ1, . . . , ξm}) = g and assume that Xi is the vector

field associated to ξi by setting Xi,g = TeL̂g(ξi) for i = 1, . . . ,m and g ∈ G. Next, define inductively
a family (Gk)k∈N of subspaces of g by setting G0 = spanR{ξ1, . . . , ξm} and Gk = Gk−1 + [G0, Gk−1] for
k ≥ 1. Then consider mappings λ, ρ : {m+ 1, . . . , n} −→ {1, . . . , n} and an ordered basis {ζ1, . . . , ζn} of
g such that

1. Gk = spanR{ζ1, . . . , ζdim(Gk)} for k = 1, . . . ,min{k : Gk = g}.

2. Whenever k ≥ 2 and dim(Gk−1) ≤ i ≤ dim(Gk), one has ζi = [ζλ(i), ζρ(i)], with ζλ(i) ∈ Ga,
ζρ(i) ∈ Gb and a+ b = k.

The set {ζ1, . . . , ζn}, together with the mappings λ and ρ, constitute a graded basis of g. With such
basis one associates an n-tuple (r1, . . . , rn), referred to as a weight vector, by requiring that ri = k if,
and only if, ζi ∈ Gk \Gk−1. Given a graded basis, the construction of the transverse function proceeds
by selecting strictly positive reals εm+1, . . . , εn and by defining mappings fi : T −→ G (i = m+ 1, . . . , n)
as follows:

fi(θ) = exp
(
ε
rλ(i)

i sin(θ)ζλ(i) + ε
rρ(i)

i cos(θ)ζρ(i)
)
.

With these mappings at hand, a transverse function f : T
n−m −→ G is then obtained by setting

f(θm+1, . . . , θn) = fn(θn)fn−1(θn−1) · · · fm+1(θm+1).

4 Vertically transverse functions for second-order systems

Here we show how tangent mappings of transverse functions for driftless systems define “vertically trans-
verse functions,” which bears relevance for second-order systems. Let Q be a manifold (the configuration
manifold, by analogy with the case of mechanical systems) and let p ∈ Q. Starting with a set of vector
fields {X1, . . . , Xm} ⊂ Γ(TQ) that satisfies the Lie algebra rank condition at p, we define a “lifted”
system on TQ by considering a second-order vector field Z ∈ Γ(TTQ) and the system

v̇ = Zv +
m∑

i=1

uiX lift
i,v . (4)

As can be anticipated, the choice Z will have an impact on the solutions to control problems addressed
below. The approach proceeds by assuming that the target system (also called the controlled system)
is of the form (4). This form encompasses a class of second-order and simple mechanical systems (fully
actuated or underactuated, possibly subject to constraints). The goal is to provide control laws for a
class of target systems (4), building upon the properties of any transverse function f for {X1, . . . , Xm},
a function whose existence is guaranteed by the assumptions. Our first result in this vein states that Tf
satisfies a condition that somehow extends (3), namely, that along the image of Tf , the image of the
vertical subbundle (TTT

κ)vert by TTf , together with the distribution spanned by the lifted control vector
fields {X lift

1 , . . . , X lift
m }, generate the vertical subbundle of TTQ over Tf(TT

κ). This is made precise in
the following proposition.
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Proposition 1 Let X = {X1, . . . , Xm} ⊂ Γ(TQ) satisfy the Lie algebra rank condition at a point p ∈ Q,
and let f : T

κ −→ Q be a Morin–Samson transverse function for X near p. Then, for every ω ∈ TT
κ,

TTf(ω)TQ
vert = TTf((TωTT

κ)vert) + spanR{X lift

1,Tf(ω), . . . , X
lift

m,Tf(ω)}. (5)

Moreover, if f is such that the sum in (3) is direct, then so is the sum in (5).

Proof. Let θ ∈ T
κ, let ω ∈ TθT

κ and assume that v ∈ TTf(ω)TQ
vert. The verticality of v and Lemma 1-

(iii) imply the existence of ṽ ∈ Tf(θ)Q such that v = lift(Tf(ω), ṽ). In addition, from (3) we deduce
the existence of a vector ω ∈ TθT

κ and real numbers a1, . . . , am such that ṽ = Tf(ω) +
∑m

i=1 a
iXi,f(θ).

Applying the linear mapping lift(Tf(ω), · ) to both members of this equation we get

v = lift(Tf(ω), T f(ω)) + lift
(
Tf(ω),

∑m
i=1 a

iXi,f(θ)

)

= TTf(lift(ω, ω)) +
∑m

i=1 a
iX lift

i,Tf(ω) (by Lemma 1-(ii)).

Since lift(ω, ω) ∈ (TωTT
κ)vert, this proves that (5) holds. Now suppose that the sum in (3) is direct, let

θ and ω be as above, and assume that

v ∈ TTf((TωTT
κ)vert) ∩ spanR{X lift

1,Tf(ω), . . . , X
lift
m,Tf(ω)}.

We shall show that v = 0. By assumption, there exist α ∈ (TωTT
κ)vert and real numbers a1, . . . , am such

that v = TTf(α) =
∑m
i=1 a

iX lift
i,Tf(ω). Since α is a vertical tangent vector, Lemma 1-(iii) implies that it is

the lift by ω of a tangent vector ω ∈ TθT
κ, i.e., α = lift(ω, ω). The mapping lift(Tf(ω), ·) is linear, hence

lift
(
Tf(ω),

∑m
i=1 a

iXi,f(θ)

)
=

∑m
i=1 a

ilift
(
Tf(ω), Xi,f(θ)

)

=
∑m

i=1 a
iX lift

i,Tf(ω)

= TTf(lift(ω, ω))

= lift(Tf(ω), T f(ω)) (by Lemma 1-(ii)).

Since lift(Tf(ω), ·) is injective as well, a consequence of Lemma 1-(iii), one infers that
∑m

i=1 a
iXi,f(θ) =

Tf(ω). However, the sum in (3) is direct, by assumption, hence
∑m

i=1 a
iXi,f(θ) = Tf(ω) = 0. Using

again the linearity of lift(Tf(ω), · ), we conclude that v = 0, which completes the proof.
By extension of the nomenclature used in [13], a mapping F : TT

κ −→ TQ of class C1 such that

∀ω ∈ TT
κ : TF (ω)TQ

vert = TF ((TωTT
κ)vert) + spanR{X lift

1,F (ω), . . . , X
lift
m,F (ω)},

is said to be vertically transverse to the vector fields in {X lift
1 , . . . , X lift

m }. Let us remark that if
f : T

κ −→ Q is transverse to X near p, the previous proposition ensures that Tf is vertically transverse
to {X lift

1 , . . . , X lift
m }. In such a case, which arises as a natural way to define vertically transverse functions,

F = Tf is a bundle mapping over f , thus, in a coordinate chart (U, (θ1, . . . , θκ)) for T
κ, both conditions

(3) and (5) essentially boil down to

R
n = spanR

{
∂f̂/∂θ1(θ), . . . , ∂f̂/∂θκ(θ)

}
+ spanR

{
X̂1,f(θ), . . . , X̂m,f(θ)

}
,

where f̂ and X̂ are the representatives of f and X , respectively. These two conditions are not equivalent,
however, since in general F need not be a bundle mapping.

5 Applications of vertically transverse functions to control

5.1 Framework for practical point-stabilization

As a first example of how vertically transverse functions may be applied for control, suppose that the
configuration manifold G is a Lie group and that the vector fields Xi ∈ Γ(TG) (i = 1, . . . ,m) are obtained
by left-translating vectors ξi ∈ g that satisfy Lie({ξ1, . . . , ξm}) = g. In this case, using the procedure
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recalled in Section 3, for any open set U ⊂ G one can define a transverse function f : T
n−m −→ U and,

from Proposition 1, we see that Tf satisfies, for every ω ∈ TT
n−m,

TTf(ω)TG
vert = TTf((TωTT

n−m)vert) ⊕ spanR{X lift
1,Tf(ω), . . . , X

lift
m,Tf(ω)}. (6)

Mimicking the procedure described in [14], we extend system (4) dynamically by selecting a global frame
for (TTT

n−m)vert, that is, a set {Ω1, . . . ,Ωn−m} ⊂ Γ(TTT
n−m) such that span

R
{Ω1,ω, . . . ,Ωn−m,ω} =

(TωTT
n−m)vert for all ω ∈ TT

n−m. The existence of a global frame is guaranteed by the triviality of
TTT

n−m as a vector bundle. We then select a second-order vector field ∆ ∈ Γ(TTT
n−m), typically the

spray associated with a flat metric on T
n−m, and define the auxiliary system

ω̇ = ∆ω +

n−m∑

i=1

wiΩi,ω. (7)

If ω : (t0, t1) −→ TT
n−m and w : (t0, t1) −→ R

n−m are functions of classes C1 and C0, respectively,
which satisfy the differential equation (7), we shall refer to the couple (ω,w) as an auxiliary trajectory.
At this point we define an error signal whose intent, intuitively speaking, is to quantify the deviation
of the state v of (4) from the image by Tf of the state ω of (7). The definition profits from the Lie
group structure on TG defined by taking µ as in (2); we set z = µ(v, (Tf(ω))−1), which, for the sake of
simplicity, we write as z = v · Tf(ω)−1.1 The motivation for this definition is the following. Much as
in the original TFA, in our approach described below, the auxiliary system (7) behaves as a (variable-
frequency) oscillator whose state ω(t) is mapped by Tf into TG. Under appropriate conditions, ω(t)
ultimately enters a compact neighborhood K of the zero section of TT

n−m, which implies that if the
feedback is designed so that z(t) tends to zero, then v(t) ultimately approaches Tf(K). Thus the base
(or “configuration”) trajectory q(t) = πG(v(t)) approaches the set f(Tn−m) and, since the latter can be
constructed to lie in an arbitrary neighborhood of the target configuration, q(t) ultimately enters that
neighborhood, as required by practical stability of the configuration trajectories.

Now, if (ω,w) is any arbitrary auxiliary trajectory and B is defined along the curve Tf ◦ω : (t0, t1) −→
TG by BTf◦ω(t) = (Tf ◦ ω)′(t) = Tt(Tf ◦ ω) (∂/∂r|t), then, by Lemma 1-(v), B satisfies a second-order
equation. The following result is the key to writing an explicit expression for the error dynamics.

Proposition 2 Let TG be a tangent Lie group, A ∈ Γ(TTG) a second-order vector field (not necessarily
left-invariant) and let B be a second-order vector field defined along a smooth curve b : (t0, t1) −→ TG
by ḃ(t) = Bb(t). Then (i) if a : (t0, t1) −→ TG is an integral curve of A, the curve c = ab−1 satisfies, for
t ∈ (t0, t1),

ċ(t) = TRb−1(t)(Aa(t) − TLc(t)(Bb(t))); (8)

and (ii) (8) defines a (non-autonomous) second-order differential equation on TG.

Proof. (i) Let B̃ be the vector field along the curve b−1 defined by B̃b−1(t) = (b−1)′(t). Differentiating

c(t) = µ(a(t), b−1(t)), with µ given by (2), one finds that ċ(t) = TLa(t)(B̃b−1(t)) + TRb−1(t)(Aa(t)). Also,

by differentiating e = µ(b−1(t), b(t)) one easily concludes that B̃b−1(t) = −TRb−1(t) ◦ TLb−1(t)(Bb(t)).
Therefore, given that La(t) ◦Rb−1(t) ◦ Lb−1(t) = Lc(t) ◦Rb−1(t) = Rb−1(t) ◦ Lc(t), we get

ċ(t) = TLa(t)(−TRb−1(t) ◦ TLb−1(t)(Bb(t))) + TRb−1(t)(Aa(t))

= TRb−1(t)(Aa(t) − TLc(t)(Bb(t))).

(ii) For each β in the image of b, define Cβ : γ 7→ TRβ−1(Aγβ−TLγ(Bβ)). Clearly, for t ∈ R and γ ∈ TG
one has Cb(t)(γ) ∈ TγTG, i.e., Cb(t) is a section of TTG and thus a (time-varying) vector field on TG. It
remains to show that TπG ◦Cβ = idTG for every β ∈ b((t0, t1)) ⊂ TG. Pick any such β and observe that

T (πG ◦Rβ−1) = T (R̂πG(β−1) ◦ πG) and T (πG ◦ Lγ) = T (L̂πG(γ) ◦ πG), which, for γ ∈ TG, entails that

(TπG ◦ Cβ)(γ) = TπG(TRβ−1(Aγβ − TLγ(Bβ)))

= T R̂πG(β−1) ◦ TπG(Aγβ − TLγ(Bβ))

= T R̂πG(β−1)(TπG(Aγβ) − T L̂πG(γ) ◦ TπG(Bβ)).

1We write Tf(ω) for Tf ◦ ω and Tf(ω)−1 for (Tf(ω))−1 to simplify the exposition.
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However, both A and B are second order, thus TπG(Aγβ) = γβ and TπG(Bβ) = β. Using these equations,

along with γβ−T L̂πG(γ)(β) = T R̂πG(β)(γ), we obtain (TπG◦Cβ)(γ) = T R̂πG(β−1)(γβ−T L̂πG(γ)(β)) = γ,
as required.

In order to apply Proposition 2, we define curves a = v and b = Tf ◦ ω, as well as the corresponding
vector fields

Av = Zv +
∑m

i=1 u
iX lift

i,v and BTf(ω) = TTf
(
∆ω +

∑n−m
i=1 wiΩi,ω

)
,

thus yielding

ż = TRTf(ω)−1

(
Zv +

∑m
i=1 u

iX lift
i,v −TLz ◦ TTf

(
∆ω +

∑n−m
i=1 wiΩi,ω

))
.

Grouping the drift and controlled vector fields, and using v = z · Tf(ω) as well as the left-invariance
of X lift

1 , . . . , X lift
m , we obtain the following error dynamics, which, by virtue of Proposition 2-(ii), is a

second-order equation:

ż = TRTf(ω)−1(Zz·Tf(ω) − TLz ◦ TTf(∆ω)) +

TRTf(ω)−1 ◦ TLz
(∑m

i=1 u
iX lift

i,Tf(ω) −
∑n−m
i=1 wiTTf(Ωi,ω)

)
. (9)

We now address how vertical transversality may be used for control purposes. The main idea is that,
for second-order systems, the control inputs can only shape the second-order time derivatives of the
base trajectories, which amounts to assigning values for those derivatives in the vertical subbundle. The
latter, according to (5), is spanned by the control distribution and the image of the vertical subbundle
(TωTT

κ)vert. This fact provides one with full control over the error system and, therefore, it enables
one to impose any desired (smooth) second-order error dynamics Y . The following result makes this
statement precise.

Theorem 1 Given a second-order vector field Y ∈ Γ(TTG), there exists a smooth feedback law α =
(α1, . . . , αn) : TG × TT

n−m −→ R
n such that the error z = v · Tf(ω)−1 satisfies ż = Yz along the

trajectories of the compound system

(v̇, ω̇) =
(
Zv +

∑m
i=1 α

i(v · Tf(ω)−1, ω)X lift

i,v , ∆ω +
∑n−m

i=1 αi+m(v · Tf(ω)−1, ω)Ωi,ω

)
. (10)

Proof. Finding the required feedback amounts to setting the right-hand-side of (9) equal to Yz , solving
the resulting equation for the ui and wj in terms of (z, ω), and then checking that the solutions define a
smooth mapping α : TG× TT

n−m −→ R
n. The first step leads to

∑m
i=1 ui X lift

i,Tf(ω) −
∑n−m

i=1 wiTTf(Ωi,ω)

= (TRTf(ω)−1 ◦ TLz)−1(Yz − TRTf(ω)−1(Zz·Tf(ω) − TLz ◦ TTf(∆ω)))

= TLz−1 ◦ TRTf(ω)(Yz − TRTf(ω)−1(Zz·Tf(ω) − TLz ◦ TTf(∆ω)))

= TLz−1 ◦ TRTf(ω)(Yz − (Dω)z),

where, for each ω ∈ TT
n−m, we have defined the vector field Dω ∈ Γ(TTG) by setting

Dω : z 7→ TRTf(ω)−1(Zz·Tf(ω) − TLz ◦ TTf(∆ω)).

Since the right-hand-side of (9) is second order, so is Dω for every ω ∈ TT
n−m and, by linearity of TπG

on restriction to the fibers, TπG ◦ (Yz − (Dω)z) = TπG(Yz)− TπG((Dω)z) = z− z = 0, which shows that

Y −Dω is vertical. On the other hand, TπG ◦TLξ = T L̂πG(ξ) ◦TπG and TπG ◦TRξ = T R̂πG(ξ) ◦TπG for
every ξ ∈ TTG, both of which imply that TLz−1 ◦ TRTf(ω)(Yz − (Dω)z) is vertical as well. By virtue of
(6) and the assumption that {Ω1, . . . ,Ωm} is a (global) frame for (TTT

n−m)vert, there exists a mapping
α : TG× TT

n−m −→ R
n such that, for every (z, ω) ∈ TG× TT

n−m,
∑m

i=1 α
i(z, ω) X lift

i,Tf(ω) −
∑n−m
i=1 αi+m(z, ω)TTf(Ωi,ω)

= TLz−1 ◦ TRTf(ω)(Yz − (Dω)z). (11)

One easily checks that α so defined is smooth.
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5.2 Zero-dynamics of the closed-loop system

We have seen how to formulate a point-stabilization problem in a setup based on vertically transverse
functions. Nevertheless, while Theorem 1 states that the error dynamics can be arbitrarily assigned as
a second-order equation, further investigation is needed to assess the nature of the trajectories of the
compound system (10). The latter may even fail to be positively complete, i.e., the maximum intervals
of existence of some of its solutions may be bounded in R. This is a consequence of how the problem was
formulated, namely as an output regulation problem, where the “output” is the mapping that defines the
error: (v, ω) 7→ z = v · Tf(ω)−1. As it is well known, imposing a given dynamics on the output signal
may induce undesirable effects on the system’s solutions, thus compelling one to the study the associated
zero-dynamics, the nature of which may determine the asymptotic behavior of the compound system.
Throughout this section we assume that the feedback law α = (α1, . . . , αn) : TG × TT

n−m −→ R
n

has been determined, according to Theorem 1, from the given of a vector field Y ∈ Γ(TTG) for which
0e ∈ TG is an equilibrium point, so that (9), controlled by α(z, ω), writes as ż = Yz . Under this
assumption, the zero-dynamics is determined simply by setting, in Equation (9), z = 0e, u

i = αi(0e, ω)
and wj = αj+m(0e, ω), i = 1, . . . ,m, j = 1, . . . , n −m. After simplification, the substitution yields, for
ω ∈ TT

n−m,

ZTf(ω) +
∑m
i=1 α

i(0e, ω)X lift
i,Tf(ω) = TTf(∆ω) +

∑n−m
j=1 αj+m(0e, ω)TTf(Ωj,ω). (12)

Since TωTf is linear for every ω ∈ TT
n−m, (12) is equivalent to the equality

Z ◦ Tf +
∑m
i=1 ν

i · (X lift
i ◦ Tf) = TTf ◦

(
∆ +

∑n−m
j=1 νj+mΩj

)
, (13)

where the objects on both members are regarded as mappings TT
n−m −→ TTG, and ν : TT

n−m −→ R
n

is defined by ν(ω) = α(0e, ω). Equation (13) shows that, on one hand, the zero-dynamics is independent of
the particular choice of desired error dynamics Y , and, on the other, the zero-dynamics for the auxiliary
and controlled systems are Tf -related, thus it suffices to study trajectories of the former in order to
characterize the trajectories of the target system. In this respect, an interesting fact is that the auxiliary
zero-dynamics inherits the structure of the target system, that is, if the latter is an affine connection
control system (in the sense of [8]), possibly with nonzero potential term, then so is the zero-dynamics
of the auxiliary system. To state this claim more accurately, first let us define a projection operator P
which maps vectors in TTGvert lying over points of N := Tf(TT

n−m), to vectors in TTf((TTT
n−m)vert).

If {Λ1, . . . ,Λn−m} ⊂ Γ(TT
n−m) is a set of vector fields whose lifts are a global frame for the vertical

subbundle (TTT
n−m)vert, and P ∈ Γ(TTGvert) is a vertical vector field, the vertical transversality of

Tf implies the existence of a unique mapping a = (a1, . . . , an) : TT
n−m −→ R

n such that P ◦ Tf =∑m
i=1 a

i(X lift
i ◦ Tf) +

∑n−m
i=1 TTf ◦ (ai+mΛlift

i ). The projector P is then defined so that P ◦ P ◦ Tf =∑n−m
i=1 TTf◦(ai+mΛlift

i ). Correspondingly, there exists a unique vertical vector field Π =
∑n−m
i=1 ai+mΛlift

i

such that P ◦ P ◦ Tf = TTf ◦ Π.2 The claim can now be restated as follows.

Theorem 2 Let ν : TT
n−m −→ R

n be such that (13) holds and assume that Z = S + P , where
S ∈ Γ(TTG) is a spray and P ∈ Γ(TTGvert). Let Π ∈ Γ((TTT

n−m)vert) be the vector field that satisfies
P ◦ P ◦ Tf = TTf ◦ Π. Then there exists a spray Σ ∈ Γ(TTT

n−m) such that

∆ +
n−m∑

j=1

νj+mΩj = Σ + Π.

Proof in the Appendix.

Remark 1 If in the statement of Theorem 2 one thinks of P and Π as force-like terms arising from
potential functions (for instance, P might be the lift of minus the gradient of the potential energy in a
simple mechanical system), then only the projection P ◦ P ◦ Tf has an effect on the potential term Π of

2Formally, P is a vector bundle mapping P : Tf∗(TTGvert) −→ TTf((TTT
n−m)vert) covering Tf , where Tf∗(TTG) is

the pullback bundle induced by Tf .
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the zero-dynamics. The complementary component (P − P ◦ P ) ◦ Tf , however, gets incorporated into
the spray Σ. The decomposition of Z as a sum S+P is not unique and different choices of S and P lead
to different vector fields Σ and Π (the sum Σ + Π being, of course, equal in every case).

Remark 2 Suppose that Z = S, the geodesic spray of a metric g. The effect of the control inputs
ν(ω) on the controlled and auxiliary systems, which yield the zero-dynamics (13), may be interpreted as
follows. The vector field

∑m
i=1 ν

i · (X lift
i ◦ Tf) is added to the original spray Z so that its restriction to

Tf(TT
n−m) equals the image, by TTf , of the drift ∆ after the addition of

∑n−m
j=1 νj+mΩj . In that case,

Theorem 2 asserts that the nature of the uniquely defined functions ν is quite specific, in the sense that
the zero-output controlled and auxiliary vector fields are Tf -related sprays. Since the immersed manifold
N = Tf(TT

n−m) ⊂ TG is invariant under the zero-dynamics Z◦Tf+
∑m
i=1 ν

i ·(X lift
i ◦Tf), one may think

of
∑m

i=1 ν
i ·(X lift

i ◦Tf) as lifts of “force” terms that enforce holonomic constraints, much in the spirit of [1,
Cor. 3.7.9]. In general, however, those forces are not orthogonal to TN ; they contain components in the
direction of TN , so they do not satisfy d’Alembert’s principle and therefore affect the “energy content”
of the zero-dynamics system. In the terminology and notation of [1, §3.7.8], TTf ◦ (∆ +

∑n−m
j=1 νj+mΩj)

need not be equal to TP ◦S, where P denotes the orthogonal projection of the pullback bundle Tf∗(TTG)
onto TN .

At this point, it is interesting to ask whether the zero-dynamics is positive-complete and, if so, whether
its solutions remain in a relatively compact neighborhood of the zero section of TT

n−m. Suppose, for
instance, that Z = S satisfies the assumptions of Theorem 2 so that the zero-dynamics writes as ω̇ = Σω ,
with Σ a spray. The latter determines a unique torsion-free affine connection ∇ on TT

n−m. If ∇ were
the (Levi-Cività) connection of a Riemannian metric G on T

n−m, one would deduce at once the positive-
completeness of the zero-dynamics, for every compact Riemannian manifold is geodesically complete
[6, Cor. 4.4]. Also, the “kinetic energy” would be constant along the solutions, so these would evolve
in a relatively compact neighborhood of the zero section of TT

n−m, i.e., the velocity coordinates would
remain bounded. The question whether a torsion-free connection is the Levi-Cività connection of a metric
is addressed, among other references, in [18], where conditions are stated in terms of the corresponding
holonomy groups Φ(θ). Recall that, for given θ ∈ TT

n−m, Φ(θ) consists of all endomorphisms of TθT
n−m

defined via parallel transport along loops on the base which are piecewise-smooth and have θ as endpoints
(see e.g. [6] for more details). Schmidt proves a general version of the following result, adapted to suit
our present needs.

Proposition 3 [18] An affine connection ∇ on T
n−m is the Levi-Cività connection of a metric on T

n−m

with signature (p, q) if, and only if, there exists a non-degenerate quadratic form G on TθT
n−m, with

signature (p, q), which is invariant under Φ(θ).

In general, determining whether a given connection ∇ satisfies the assumptions of Proposition 3 is a
difficult task since ∇ need not be flat and T

n−m is not simply connected. Nevertheless, for systems
underactuated by one control, for which n−m = 1, a simple condition can be stated.

Proposition 4 An affine, torsion-free connection ∇ : Γ(TT) −→ Γ(T ∗
T⊗ TT) on TT is the Levi-Cività

connection of a pseudo-Riemannian metric if, and only if, there is a global frame s ∈ Γ(TT) such that
the one-form A ∈ Γ(T ∗

T), uniquely determined by A⊗ s = ∇s, is exact.

Proof. It is easily checked that the de Rham cohomology class of A is independent of s; thus, if A is
exact, then so is the form A′ defined analogously by another frame s′ ∈ Γ(TT). Assume that ∇ is torsion-
free and orient T so that IA :=

∫
T
A is defined. For a loop γ : [a, b] −→ T such that γ(a) = γ(b) =: θ,

the parallel transport of ω = ks(θ) ∈ TθT by γ is given by Lγ(ω) = exp (IA) ks(θ). Since dim(T) = 1, the
curvature tensor R is zero and ∇ is flat. Hence, the holonomy around γ depends only on its homotopy
class [γ] in π(T, θ), the fundamental group of T based at θ (cf. [6, Chap. II-9]). Since π(T, θ) ≃ Z, for
every such γ there exists n ∈ Z such that Lγ(ω) = exp (nIA) ks(θ). Given a quadratic non-degenerate
form G on TθT, there exists G 6= 0 such that G(s(θ), s(θ)) = G. Thus G is preserved by Φ(θ) if, and only

if, for every k, k′ ∈ R and every n ∈ Z, Gkk′ = G(ks(θ), k′s(θ)) = G (exp(nIA))2 kk′, i.e., if, and only if,
| exp (nIA) | = 1 for all n ∈ Z. But this is equivalent to IA =

∫
T
A = 0 and, in turn, since dA = 0, to the

existence of a function f ∈ C∞(T) such that A = df . Proposition 3 then implies the conclusion.
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5.3 Long-term behavior of the compound system

Here we approach the analysis of the closed-loop system under the assumption that the zero-dynamics
is given by a spray and admits a Riemannian metric. We show that if the error dynamics has 0e as
a locally exponentially stable point (in a sense defined below), and the zero-dynamics admits a kinetic
energy function, then the compact set {0e} × Z(TT

n−m) is uniformly stable for the compound system,
where Z(TT

n−m) denotes the zero-section of TT
n−m. Before proceeding, let us precisely define the

stability notions that we shall use in the sequel. Let X be a vector field on a manifold M of dimension
d. For t0 ∈ R and x0 ∈ M , denote by t 7→ φ(t, t0, x0) the maximal solution of the initial value problem
ẋ(t) = Xx(t), x(t0) = x0. A point x0 ∈ M is said to be locally exponentially stable for X if there
exists a chart (U,ψ) on M such that ψ(x0) is locally exponentially stable (in the usual sense) for the
push-forward vector field ψ∗X ∈ Γ(TR

d).3 Given a subset U ⊂M , X is said to be U-positive-complete
if, for every t0 ∈ R and every x0 ∈ U , the domain of t 7→ φ(t, t0, x0) contains [t0,+∞). A subset S ⊂M
is said to be positively invariant under X if X is S-positive-complete and, for every t0 ∈ R and every
x0 ∈ S, φ(t, t0, x0) ∈ S for all t ∈ [t0,+∞). A positively invariant, compact subset S ⊂ M is said to be
uniformly stable under X if for every neighborhood V of S there exists a neighborhood U of S such
that X is U -positive-complete and, for every t0 ∈ R and every x0 ∈ U , one has φ(t, t0, x0) ∈ V for all
t ∈ [t0,+∞).

Theorem 3 Let Y ∈ Γ(TTG) be a vector field that admits 0e ∈ TG as a locally exponentially stable
equilibrium and assume that a feedback law is applied to the controlled system (4) so that the combined
error and auxiliary dynamics writes as

(ż, ω̇) =
(
Yz , ∆ω +

∑n−m
i=1 αi+m(z, ω)Ωi,ω

)
. (14)

Assume, furthermore, that the auxiliary zero-dynamics is given by ω̇ = Σω = ∆ω+
∑n−m
i=1 αi+m(0e, ω)Ωi,ω,

with Σ ∈ Γ(TTT
n−m) a spray, and that there exists a positive-definite metric tensor G on T

n−m such that
the function K : TG × TT

n−m −→ R defined by K(z, ω) = 1
2G(ω, ω) is constant along the trajectories

of ω̇ = Σω. Then the set {0e} × Z(TT
n−m), where Z(TT

n−m) denotes the zero-section of TT
n−m, is

uniformly stable under the dynamics defined by (14).

Proof in the Appendix.

Remark 3 Under the assumptions of Theorem 3, the error decreases “exponentially fast” and the zero-
dynamics is conservative, thus the conclusion appears to be intuitively clear. However, the proof of the
result is slightly involved due to two facts. First, the stability notion concerns a set which cannot be
covered by a single coordinate chart, so the analysis is carried out, instead, by “lifting” the system to
an appropriate covering manifold. Second, the system that determines the asymptotic properties of the
trajectories—the zero-dynamics—does not admit an exponentially stable equilibrium, thus ruling out the
application of many of the well-known theorems regarding stability in the presence of disturbances.

Remark 4 It is interesting to observe that Theorem 3 pertains to the stability of {0e}×Z(TT
n−m) under

the combined target- and auxiliary- (as opposed to zero-) dynamics. In view of the marginal stability (or
conservativeness) of the zero-dynamics, one may legitimately wonder whether the target system velocities
may grow indefinitely whenever the error z(t) does not vanish asymptotically but remains bounded, as in
the case when measurement noise is present. Naturally, a thorough robustness analysis should be carried
out to settle this still unaswered question; however, simulations seem to suggest that in such case the
target (and auxiliary) system velocities remain bounded, with a bound that seems to depend on the error
bound.

3We use this—voluntarily naive—definition for simplicity; however, since there is no canonical way to define exponential
stability of a point for systems evolving on general manifolds, alternative definitions may be envisaged.
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6 Example

Consider the so-called extended chained form (ECF) system

q̈1 = u1, q̈2 = u2, q̈3 = u1q2. (15)

This is a second-order, two-input system on R
3 which locally represents, modulo a static-feedback trans-

formation, the dynamics of a class of underactuated mechanical systems. An example is the ideal-
ized, three degree-of-freedom, prismatic-prismatic-rotational (PPR) manipulator with passive rotational
joint (cf. [4]). The ECF fails to satisfy Brockett’s condition, hence the asymptotic stabilization of
any equilibrium point by continuous state-feedback is ruled out. Thus the point-stabilization problem
is more difficult to solve for the ECF than for other underactuated mechanical systems; e.g. for sys-
tems akin to the inverted pendulum—where the passive joint is subject to gravity—local asymptotic
stabilization of the upright equilibrium position can be easily carried out via a linear approximation at
that point. Consider the Lie group G with underlying manifold structure R

3 and group multiplication
µ̂(x, y) = ( x1 + y1, x2 + y2, x3 + y3 + x2y1 ). We take q = idG and consider natural (global) coordinates
(TG, (q, q̇)) on the tangent group TG. Using these coordinates, the group operation on TG is

µ(x, y) = (x1 + y1, x2 + y2, x3 + y3 + x2y1, x4 + y4, x5 + y5, x6 + y6 + x2y4 + x5y1)

Now, defining vector fields X1, X2 ∈ Γ(TG) by X1,q = ∂
∂q1 + q2 ∂

∂q3 and X2,q = ∂
∂q2 , we see that (15)

defines the target system as a second-order system on TG of the form (4) provided we consider, for
v = (q, q̇),

Zv =
∑3

i=1 q̇
i ∂
∂qi , X lift

1,v = ∂
∂q̇1 + q2 ∂

∂q̇3 , X lift
2,v = ∂

∂q̇2 .

Clearly, the vector field Z is a spray—the geodesic spray of a Euclidean metric on R
3, indeed. It is also

easy to check that both Xi and X lift
i (i = 1, 2) are left-invariant and satisfy [X1, X2] = − ∂

∂q3 , so that

Lie({X1, X2})(q) = TqG for every q ∈ G. Therefore one may apply the methodology of [14], recalled in
Section 3, to construct a transverse function f : T −→ G for the system q̇ = u1X1,q + u2X2,q. Using
angular coordinates (U, θ) on T, the method in [14] yields f(θ) =

(
ε sin(θ), ε cos(θ), 1

4ε
2 sin(2θ)

)
, with

ε > 0 arbitrary. (For brevity, in the sequel we write s = sin and c = cos.) The transversality condition
(3) amounts to the determinant of the matrix with columns X1,f(θ), X2,f(θ) and f ′(θ) being constant

equal to − 1
2ε

2. Using natural coordinates (θ, θ̇) for TT, the value of the associated tangent mapping Tf

at ω = (θ, θ̇) ∈ TθT is

Tf(ω) =
(
εs(θ), εc(θ), 1

4ε
2s(2θ), εc(θ)θ̇, −εs(θ)θ̇, 1

2ε
2c(2θ)θ̇

)
.

Let us now verify that Tf satisfies the vertical transversality condition (6). Considering natural coordi-
nates (θ, θ̇, αL, αH) for TTT, one first evaluates the tangent of Tf at a vertical vector α ∈ ker(TωπT) ⊂
TωTT. Since TωπT maps (θ, θ̇, αL, αH) to (θ, αL), α is in the kernel of TωπT if, and only if, it has the
form α = (θ, θ̇, 0, αH), so for simplicity we take α̃ = (θ, θ̇, 0, 1). Carrying out the operations one obtains

TTf(α̃) =
(

0, 0, 0, εc(θ),−εs(θ), 1
2ε

2c(2θ)
)
.

Now, X lift
1 , X lift

2 and TωTf(α̃) span (TTf(ω)TG)vert. To see this, observe that any vector in the latter

is of the form
∑3

i=1 α
i ∂
∂q̇i , that is, its first three components are zero. Hence the claim holds if the

determinant of the submatrix consisting of the lower three rows of the matrix with columns X lift
1,Tf(ω),

X lift
2,Tf(ω) and TTf(α̃) does not vanish. But this is exactly the matrix (X1,f(θ), X2,f(θ), f

′(θ)) considered

above, with determinant equal to − 1
2ε

2, so Tf indeed satisfies (6).
We define the auxiliary system (7) on TT by

θ̈ = w, (16)
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and the corresponding error z = µ(v, T f(ω)−1)

z =
(
q1 − εs(θ), q2 − εc(θ), q3 + 1

4ε
2s(2θ) − q2εs(θ), q̇1 − εc(θ)θ̇,

q̇2 + εs(θ)θ̇, q̇3 − q̇2εs(θ) − q2εc(θ)θ̇ + 1
2ε

2c(2θ)θ̇
)
.

Differentiating this expression we get the error dynamics

ż = F (z, ω) +
∑3

i=1 u
iGi(z, ω), (17)

with u3 = w and the components of F and the Gis given by

F (z, ω) =
(
z4, z5, z6, εs(θ)θ̇2, εc(θ)θ̇2, 1

2ε
2s(2θ)θ̇2 + εs(θ)z2θ̇2 − 2εc(θ)z5θ̇

)

G1(z, ω) = ( 0, 0, 0, 1, 0, z2 + εc(θ) )

G2(z, ω) = ( 0, 0, 0, 0, 1, −εs(θ) )

G3(z, ω) =
(

0, 0, 0, −εc(θ), εs(θ), − 1
2ε

2 − εc(θ)z2
)
.

Each of the Gis, as well as F , is a family of vector fields on TG indexed by ω = (θ, θ̇) ∈ TθT. Clearly,
F (·, ω) is second order whereas Gi(·, ω) is vertical (i = 1, 2, 3), thus the error dynamics (17) is second
order for all ω ∈ TT, as anticipated by Proposition 2.

To construct a control law as outlined in Section 5, and Theorem 1 in particular, we select for the
desired dynamics a second-order vector field S ∈ Γ(TTG) having 0 as an exponentially stable equilibrium,
for instance

Sz = ( z4, z5, z6, −k1z
1 − k2z

4, −k1z
2 − k2z

5, −k1z
3 − k2z

6 ),

where the control gains k1, k2 are strictly positive. The control design now reduces to searching for a
function u : TG× TT −→ R

3 such that F (z, ω) +
∑3
i=1 u

i(z, ω)Gi(z, ω) = Sz for all (z, ω) ∈ TG× TT.
Inspecting the structure of the error dynamics (17), one concludes that this problem is equivalent to
solving (11), which in this case boils down to solving for u in the following matrix equation




1 0 −εc(θ)
0 1 εs(θ)

z2 + εc(θ) −εs(θ) − 1
2ε

2 − εc(θ)z2


 u =




−θ̇2εs(θ) − k1z
1 − k2z

4

−θ̇2εc(θ) − k1z
2 − k2z

5

− 1
2ε

2s(2θ)θ̇2 − εs(θ)z2θ̇2 + 2εc(θ)z5θ̇ − k1z
3 − k2z

6


 .

This equation is smoothly solvable since invertibility of the coefficient of u is equivalent to invertibility
of the matrix ensuring vertical transversality of Tf ; its determinant, in particular, is equal to 1

2ε
2.

In accordance with Theorem 2, the zero-dynamics of the compound system is an affine connection
control system with no potential term, defined by a spray Σ:

ω̇ = Σω = ( θ̇, − sin(2θ)θ̇2 ). (18)

Σ determines a torsion-free affine connection on TT given by ∇ ∂
∂θ

∂
∂θ = sin(2θ) ∂∂θ . If s = ∂

∂θ is a local

section on the domain of (U, θ), then κs(∇) = sin(2θ)dθ, which is exact, so its cohomology class is
zero. By Proposition 4, ∇ is the Levi-Cività connection of a family of metrics on TT, namely gθ =
Ae− cos(2θ)dθ ⊗ dθ, A > 0. Indeed, the (geodesic) Euler-Lagrange equation ∇θ̇ θ̇ = 0 associated with the

Lagrangian L(ω) = 1
2gθ(θ̇, θ̇) = 1

2Ae
− cos(2θ)θ̇2 precisely coincides with the zero-dynamics (18) for any A.

Since (L ◦ω)′ = 0, the (kinetic) energy is a conserved quantity and, given that it is bounded with respect
to θ and depends quadratically on θ̇, it follows that θ̇(t) remains bounded for all t ∈ [t0,∞). Therefore,
both Tf(ω(t)) and v(t) converge to a bounded neighborhood of the zero section in TG, the extent of
which, as shown in Theorem 3, depends on the initial conditions.
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7 Concluding remarks

In this paper we study vertical transversality, a property exhibited by tangent mappings of the transverse
functions on tori introduced in [13]. A framework is then outlined which allows one to cast practical point-
stabilization problems for underactuated (left-invariant) mechanical systems on Lie groups. Whereas the
framework does not provide solutions to those problems “automatically,” under appropriate assumptions
it leads to practical stabilizers in the configuration (or base) trajectories. By comparison with [11], besides
giving technical details, here we prove that if the target system is a simple mechanical system on a Lie
group, then the zero-dynamics is an affine connection control system. For systems underactuated by
one control, we give conditions for the zero-dynamics to admit a kinetic energy function which remains
invariant along its trajectories. We also show that in such case, if the initial error and velocities are
sufficiently small, then the solutions exist for all positive times and ultimately exhibit velocities that
may be made arbitrarily small by taking sufficiently “small” initial conditions for the error. Part of our
current research aims at introducing dissipation into the compound dynamics—via the use of so-called
generalized transverse functions, introduced in [15]—in order to ensure that the velocities of the controlled
and auxiliary systems converge to zero.

8 Appendix: Technical lemmas and proofs

Lemma 1 Let f : M −→ N be a mapping of class C2. Then:

(i) TTf maps vertical (tangent) vectors to vertical vectors.

(ii) If v, w ∈ TM satisfy πM (v) = πM (w), then TTf(lift(v, w)) = lift(Tf(v), T f(w)).

(iii) For v ∈ TM , lift(v, ·) : TπM(v)M −→ TvTM
vert is a vector space isomorphism.

(iv) If f is an immersion, then so is Tf .

(v) If X is a second-order vector field defined along a curve ω : (t0, t1) −→ TM by Xω(t) = ω̇(t), then
Tf ◦ ω satisfies a second-order differential equation.

Proof. (i) Let v ∈ TM and ξ ∈ TvTM
vert. From TπN ◦ TTf = Tf ◦ TπM one gets TπN ◦ TTf(ξ) =

Tf ◦ TπM (ξ) = 0, hence TTf(ξ) ∈ TTf(v)TN
vert. (ii) Let v, w ∈ TM satisfy πM (v) = πM (w) and

define γv,w(t) = v + tw so that lift(v, w) = T0γw
(
∂
∂r

∣∣
0

)
. By linearity of Tf on fibers, (Tf ◦ γv,w)(t) =

Tf(v + wt) = Tf(v) + tT f(w) = γTf(v),Tf(w). Therefore TTf(lift(v, w)) = T (Tf ◦ γv,w)
(
∂
∂r

∣∣
0

)
=

lift(Tf(v), T f(w)). (iii) This is well known (cf. e.g. [2]). (iv) Let v ∈ TM and α ∈ ker(TvTf) ⊂ TvTM .
We have Tf ◦ TπM = TπN ◦ TTf , hence Tf(TπM(α)) = TπN(TTf(α)) = 0. But f is an immersion,
so Tf is injective. Thus TπM (α) = 0, so α is vertical and, by (i), there exists w ∈ TπM(v)M such that
α = lift(v, w). Using (ii), 0 = TTf(α) = TTf(lift(v, w)) = lift(Tf(v), T f(w)), so Tf(w) = 0 by the
injectivity of lift(Tf(v), · ). Since Tf is injective, w = 0, so α = lift(v, 0) = 0 ∈ TvTM . Hence TvTf
is injective for every v ∈ TM and Tf is an immersion. (v) Let Y be defined along Tf ◦ ω by setting,
for t ∈ (t0, t1), YTf◦ω(t) = Tt(Tf ◦ ω)

(
∂
∂r

∣∣
t

)
. Let us prove that Y is a second order vector field along

Tf ◦ ω. First, the mapping θ = πM ◦ ω : (t0, t1) −→ M defines a curve on M whose time-derivative is
precisely ω, for if t ∈ (t0, t1), then θ̇(t) = TπM ◦Tω

(
∂
∂r

∣∣
t

)
= TπM (Xω(t)) = ω(t), since X is second order.

Then, using πN ◦Tf = f ◦ πM one gets, for every t ∈ (t0, t1), TπN ◦ Y (Tf ◦ω(t)) = TπN ((Tf ◦ω)′(t)) =
TπN◦T (Tf◦ω) (∂/∂r|t) = T (πN◦Tf◦ω) (∂/∂r|t) = T (f◦πM◦ω) (∂/∂r|t) = Tf◦Tθ (∂/∂r|t) = Tf◦ω(t),
so Y is second order along Tf ◦ ω, as claimed.

Lemma 2 Let G be a Lie group and TG its tangent group. If X ∈ Γ(TG) is left-invariant then so is
X lift ∈ Γ(TTG).

Proof. We denote translations and multiplication on G by L̂, R̂, µ̂ and, on TG, by L,R, µ. The canonical
projection TG −→ G is denoted by π. Recall that X ∈ Γ(TG) is left-invariant if, and only if, T L̂g(Xh) =
Xgh for every g, h ∈ G. Under the assumption that u, v ∈ TG, we shall show that TLu(X

lift
v ) =

X lift
uv . First note that Lu ◦ γv,Xπ(v)

= µ
(
u, v + tXπ(v)

)
= T L̂π(u)

(
v + tXπ(v)

)
+ T R̂π(v+tXπ(v))(u) =
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T L̂π(u)(v) + tT L̂π(u)(Xπ(v)) +T R̂π(v)(u) = uv+ tT L̂π(u)(Xπ(v)) = uv+ tXπ(u)π(v) = γuv,Xπ(uv)
(t), where

we used π(v + tXπ(v)) = π(v) and π(u)π(v) = π(uv), as well as the left invariance of X . Therefore,

TLu(X
lift
v ) = TLu(Tγv,Xπ(v)

(
∂
∂r

∣∣
0

)
) = T (Lu ◦ γv,Xπ(v)

)
(
∂
∂r

∣∣
0

)
= X lift

uv , as was to be shown.

8.1 Proof of Theorem 2.

We assume that f : T
n−m −→ G is transverse to {X1, . . . , Xm} near e ∈ G and the sum in (3) is

direct. Thus Tf : TT
n−m −→ TG is vertically transverse to {X lift

1 , . . . , X lift
m } and satisfies (6) for every

ω ∈ TT
n−m. Let {Λ1, . . . ,Λn−m} ⊂ Γ(TT

n−m) represent a global frame for the trivial bundle TT
n−m.

From Lemma 1-(iii), {Λlift
1 , . . . ,Λlift

n−m} is a global frame for the vertical subbundle (TTT
n−m)vert; hence,

since Ωj is vertical and smooth, there exist smooth functions λij : TT
n−m −→ R, i, j = 1, . . . , n − m,

such that Ωj =
∑n−m
i=1 λijΛ

lift
i , j = 1, . . . , n −m. In preparation for the sequel of the proof, we recall a

standard procedure (see e.g. [19, Prop. 1.35]) which locally extends mappings defined along immersed
manifolds. Consider manifolds L,M,N and mappings F : L −→ M and h : L −→ N , and assume
that TpF is injective for some p ∈ L. Let dL and dM denote the dimensions of L and M respectively.
Then there exists an open neighborhood U ⊂ L of p such that F |U is injective, and there exists a
cubic-centered coordinate system (V, ϕ) for M about F (p) for which F (U) is a slice, that is, (V, ϕ)
satisfies F (p) ∈ V , ϕ(F (p)) = 0 ∈ R

dM and ϕ(F (U)) = (−ε, ε)dL × {0} ⊂ R
dL × R

dM−dL for some
ε > 0. Now, if π : R

dM −→ R
dM denotes the projector that maps (x1, . . . , xdM ) to (x1, . . . , xdL , 0, . . . , 0),

then the mapping h̃ = h ◦ (F |U )−1 ◦ ϕ−1 ◦ π ◦ ϕ is smooth, is defined on V , and satisfies h̃(F (U)) =
h ◦ (F |U )−1 ◦ϕ−1 ◦ π ◦ϕ(F (U)) = h ◦ (F |U )−1 ◦F (U) = h(U), since ϕ−1 ◦ π ◦ϕ(F (U)) = F (U). In other

words, h̃ is explicitly constructed to “extend” h so that the following diagram commutes

U ⊂ L
F |U

//

h|U
##GG

GG
GG

GG
G

V ⊂M

h̃
{{vvv

vv
vv

vv

N

Let ω ∈ TT
n−m and set θ = πTn−m(ω). Applying the extension procedure, with F = f , h = Tf ◦ Λj ,

L = T
n−m, M = G and N = TG, and using the assumption that Tθf is injective, one deduces the

existence of open sets U ⊂ T
n−m and V ⊂ G, as well as vector fields Λ̃j defined on V , such that θ ∈ U

and

Λ̃j ◦ f |U = Tf ◦ Λj|U , j = 1, . . . , n−m. (19)

(In the terminology of [19, Def. 1.51], Λ̃j is a local C∞ extension of Λj). Moreover, by continuity of f ,
U can be taken so small that, by virtue of the transversality property (3), TqG = span{X1,q, . . . , Xm,q,

Λ̃1,q, . . . , Λ̃n−m,q} for every q ∈ V . It follows from Lemma 1-(iii) that, together with X lift
1 , . . . , X lift

m , the

lifted vector fields Λ̃lift
1 , . . . , Λ̃lift

n−m, defined on W̃ = π−1
G (V ) ⊂ TG, constitute a frame for the vertical

bundle over W̃ :

TvTG
vert = span{X lift

1,v , . . . , X
lift
m,v, Λ̃

lift
1,v, . . . , Λ̃

lift
n−m,v}, ∀v ∈ W̃ . (20)

Let σ : TT
n−m −→ R

n be the mapping with components given by σi = νi for i = 1, . . . ,m and
σj+m =

∑n−m
k=1 νk+mλjk, j = 1, . . . , n −m. In the extension procedure described above we take h = σ,

L = TT
n−m, M = TG and N = R

n, and replace F by Tf , the tangent mapping of which is injective by
virtue of Lemma 1-(iv), to deduce the existence of open neighborhoods Ũ of ω and Ṽ of Tf(ω), as well

as a mapping σ̃ : Ṽ −→ R
n such that σ̃i ◦ Tf |Ũ = σi|Ũ , i = 1, . . . , n. Again, by continuity of Tf , Ũ

can be taken so small that Ṽ ⊂ W̃ , so that Λ̃lift
1 , . . . , Λ̃lift

n−m and the functions σ̃i are defined on Ṽ ⊂ TG.
Using the ingredients above, in particular the verticality and smoothness of P , along with (20), we

ascertain the existence of a smooth mapping ã = (ã1, . . . , ãn) : Ṽ −→ R
n such that

P =
∑m

i=1 ã
iX lift

i +
∑n−m
j=1 ãj+mΛ̃lift

j . (21)
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From this definition and from [C,X lift
i ] = −X lift

i for i = 1, . . . ,m, it follows that

[C,P ] =
∑m
i=1(−ãi + C(ãi))X lift

i +
∑n−m
j=1 (−ãj+m + C(ãj+m))Λ̃lift

j

= −P +
∑m
i=1 C(ãi)X lift

i +
∑n−m

j=1 C(ãj+m)Λ̃lift
j . (22)

Now, we claim that the vector fields

Σ = ∆ +
∑n−m
j=1 (σj+m − aj+m)Λlift

j and Π =
∑n−m

j=1 aj+mΛlift
j , (23)

with a = ã ◦ Tf |Ũ , satisfy the properties in the statement. By definition of P , we see that P ◦ P ◦ Tf =
TTf ◦Π, hence the proof reduces to showing that Σ is a spray. Since Σ is a second-order vector field, as
follows immediately from its definition, it suffices to prove that [Ĉ,Σ] = Σ, where Ĉ = CT

n−m

denotes
the Liouville vector field associated with T

n−m. Using the definition of Σ and the fact that ∆ is a spray
we obtain

[Ĉ,Σ] = [Ĉ,∆] +
∑n−m
j=1 [Ĉ, (σj+m − aj+m)Λlift

j ]

= ∆ +
∑n−m

j=1 (−(σj+m − aj+m)Λlift
j + Ĉ(σj+m − aj+m)Λlift

j ). (24)

As suggested by this equation, in order to prove the claim we shall find an expression for Ĉ(σj+m−aj+m),

the Lie derivative of σj+m − aj+m in the direction of Ĉ, j = 1, . . . , n−m. We have
[
C,Z +

∑m
i=1 σ̃

iX lift
i

]
◦ Tf |Ũ = [C, S + P ] ◦ Tf |Ũ +

∑m
i=1[C, σ̃

iX lift
i ] ◦ Tf |Ũ

= S ◦ Tf |Ũ + [C,P ] ◦ Tf |Ũ +∑m
i=1((−σ̃i + C(σ̃i))X lift

i ) ◦ Tf |Ũ , (25)

and

TTf ◦
[
Ĉ,∆ +

∑n−m
j=1 σj+mΛlift

j

]
= TTf ◦

(
[Ĉ,∆]+

∑n−m
j=1 (σj+m[Ĉ,Λlift

j ] + Ĉ(σj+m)Λlift
j )

)

= TTf ◦ ∆ + (26)
∑n−m
j=1 TTf ◦ ((−σj+m + Ĉ(σj+m))Λlift

j ).

Now, from (13) and the definition of σ̃i it follows that [Ĉ,∆+
∑n−m
j=1 σj+mΛlift

j ] and [C,Z+
∑m
i=1 σ̃

iX lift
i ]

are Tf -related, hence the respective members of (25) and (26) are equal. Equating the right-hand-sides
of (25) and (26), and then replacing P and [C,P ] by their equivalent expressions as given by (21) and
(22), respectively, we obtain

(
S +

∑m
i=1(C(ãi + σ̃i) − (ãi + σ̃i))X

lift
i +

∑n−m
j=1 (C(ãj+m) − ãj+m)Λ̃lift

j

)
◦ Tf |Ũ =

TTf ◦ ∆ +
∑n−m

j=1 TTf ◦ ((−σj+m + Ĉ(σj+m))Λlift
j ). (27)

Now, the addition and then subtraction of (P +
∑m
i=1 σ̃

iX lift
i ) ◦ Tf |Ũ to the left-hand-side of (27), and

the addition and then subtraction of TTf ◦
(∑n−m

j=1 σj+mΛlift
j

)
to its right-hand-side, yields an equation

where like terms can be cancelled using again the equality of (25) and (26). After simplifying it we get

∑m
i=1((C(ãi + σ̃i) − 2(ãi + σ̃i))X lift

i ) ◦ Tf |Ũ +
∑n−m

j=1 ((C(ãj+m) − 2ãj+m)Λ̃lift
j ) ◦ Tf |Ũ =

TTf ◦
(∑n−m

j=1 (Ĉ(σj+m) − 2σj+m)Λlift
j

)
. (28)

Using the fact that Ĉ and C are Tf -related, along with the definitions of tangent mapping and of
a = ã ◦ Tf |Ũ , one obtains

C(ãj+m) ◦ Tf |Ũ = (TTf ◦ Ĉ)(ãj+m)

= Ĉ(ãj+m ◦ Tf |Ũ )

= Ĉ(aj+m), j = 1, . . . , n−m.
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Moreover, using the definition of lift of a vector field

Λ̃lift
j ◦ Tf |Ũ(ω) = lift(Tf(ω), Λ̃j,f(θ)) (since πG(Tf(ω)) = f(θ))

= lift(Tf(ω), T f(Λj,θ)) (by (19))

= TTf(lift(ω,Λj,θ)) (by Lemma 1)

= TTf(Λlift
j,ω),

thus Λ̃lift
j ◦ Tf |Ũ = TTf ◦Λlift

j , j = 1, . . . , n−m. These expressions, along with the fiberwise linearity of
TTf , enable us to write (28) as

∑m
i=1((C(ãi + σ̃i) − 2(ãi + σ̃i))X lift

i ) ◦ Tf |Ũ +
∑n−m
j=1 (Ĉ(aj+m − σj+m) − 2(aj+m − σj+m))(TTf ◦ Λlift

j ) = 0.

In view of the vertical transversality condition (6), the coefficient of TTf ◦ Λlift
j must be zero, which

implies that Ĉ(aj+m − σj+m) = 2(aj+m − σj+m), j = 1, . . . , n −m. Plugging these equations into (24)

we conclude that [Ĉ,Σ] = Σ, as required.

8.2 Proof of Theorem 3.

For the sake of brevity, we omit a number of details which are straightforward to fill in. Let κ = n−m
and M = TG × TT

κ, so that dim(M) = 2n + 2κ. Let p : T̃
κ −→ T

κ be the universal covering of T
κ

(here we consider only smooth coverings and identify coverings up to isomorphism, cf. e.g. [3, Chap. 1]

for more details). It is easily seen that Tp : T T̃
κ −→ TT

κ is the smooth universal covering of TT
κ. The

canonical projection π : R
κ −→ R

κ/Zκ defines a smooth covering isomorphic to p : T̃
κ −→ T

κ, i.e., there

exist diffeomorphisms α : T̃
κ −→ R

κ and α′ : T
κ −→ R

κ/Zκ such that π ◦ α = α′ ◦ p. Clearly, (T̃κ, α)

is a global coordinate chart which naturally induces a global chart (T T̃
κ, α̃) on T T̃

κ. Let (O, φ) be a

chart on TG such that 0e ∈ O and φ(0e) = 0. Finally, let M̃ := TG × T T̃
κ, P (z, ϑ) = (z, T p(ϑ)) and

ψ(z, ϑ) = (φ(z), α̃). Thus defined, P : M̃ −→ M is a smooth covering whereas ψ = (ψ1, . . . , ψ2n+2κ) :

O × T T̃
κ ⊂ M̃ −→ R

2n+2κ is a chart on M̃ . These coordinates will be labeled as x = (x1, . . . , x2n) =
(ψ1, . . . , ψ2n), θ = (θ1, . . . , θκ) = (ψ2n+1, . . . , ψ2n+κ) and θ̇ = (θ̇1, . . . , θ̇κ) = (ψ2n+κ+1, . . . , ψ2n+2κ).
(This choice corresponds to the θis representing angle-like functions and the θ̇is “angular velocities.”)
It is straightforward, albeit somewhat laborious, to show that our particular choice of P and ψ makes
then following claims hold: (C1) ψ(P−1({0e} × Z(TT

κ))) = {0} × R
κ × {0}, i.e., the preimage of

{0e}×Z(TT
κ) by P is a subset of M̃ whose coordinates are of the form (0, θ, 0) ∈ R

2n ×R
κ ×R

κ; (C2)
if V is a neighborhood of {0e}×Z(TT

κ), then there exist compact, convex neighborhoods V1 ⊂ R
2n and

V2 ⊂ R
κ of the respective origins such that V1×R

κ×V2 ⊂ ψ(P−1(V )); (C3) For i = 1, . . . , 2n+2κ, there
is a well-defined vector field P∗

∂
∂ψi , on an open subset of M , which is P -related to the ith coordinate

vector field ∂
∂ψi , that is, (P∗

∂
∂ψi ) ◦P = TP ◦ ∂

∂ψi ; (C4) if V1 ⊂ R
2n and V2 ⊂ R

κ are compact, then so is

P (ψ−1(V1 ×R
κ × V2)) ⊂M ; and (C5) Let K̂ be the representative of P ∗K (the pullback of K̂ by P ) in

the ψ coordinates, then there exist smooth functions gi,j : R
κ −→ R such that K̂(x, θ, θ̇) = 1

2gi,j(θ)θ̇
iθ̇j

(using Einstein’s summation convention, which remains in effect in the sequel of the proof).
Let A ∈ Γ(TM) the vector field whose value at (z, ω) ∈ M is given by the right-hand side of (14)—

with the usual identification T (TG× TT
κ) ≃ TTG× TTT

κ. The set {0e} × Z(TT
κ) is invariant under

A, which entails that I := {0} × R
κ × {0} is invariant under Â = ψ∗(P

∗A), the representative of the
pullback P ∗A in the ψ coordinates. In view of the previous assumptions, at this point the proof reduces to
establishing the following claim: For any open neighborhood V = V1×R

κ×V2 of I, there is a neighborhood
U = U1 × R

κ × U2 of I such that Â is U-positive complete and, for any initial condition (x0, θ0, θ̇0) ∈ U ,

the integral curve (x(t), θ(t), θ̇(t)) of Â, initialized at (x0, θ0, θ̇0), satisfies (x(t), θ(t), θ̇(t)) ∈ V for all t ≥ 0.
In order to prove the claim, assume, without loss of generality, that V1 ⊂ R

2n and V2 ⊂ R
κ are compact

neighborhoods of the respective origins and let V = V1 × R
κ × V2.

Define ξ ∈ Γ(TM) by ξ(z,ω) =
(

0z,
∑κ

i=1(α
i+m(z, ω) − αi+m(0e, ω))Ωi,ω

)
, so that A = (Sz,Σω) +

ξ(z,ω) and let ξ̂ be the representative of P ∗ξ in the coordinates ψ. Since K does not depend explicitly
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on z, and G is invariant under Σ, one has P ∗(A(K)) = P ∗(ξ(K)) = P ∗ξ(P ∗K). By smoothness of the

compound system, for any initial condition in its domain, the integral curve (x(t), θ(t), θ̇(t)) of Â is defined
for t in some neighborhood of 0. For any such t, the derivative of W : t 7→ P ∗K ◦ψ−1(x(t), θ(t), θ̇(t)) can
then be computed as follows

W ′(t) = P ∗ξ|ψ−1(x(t),θ(t),θ̇(t)) (P ∗K)

=
∑κ

i=1

(
∂(P∗K)
∂θi · 0 + ∂(P∗K)

∂θ̇i
(P ∗ξ)2n+κ+i

)∣∣∣
ψ−1(x(t),θ(t),θ̇(t))

=: µ ◦ ψ−1(x(t), θ(t), θ̇(t)),

with µ ∈ C∞(M̃) given by µ =
∑κ

i=1 ∂(P ∗K)/∂θ̇i · (P ∗ξ)2n+κ+i. Since ξ(0,ω) = 0 for all ω ∈ TT
κ, then

ξ̂(0,θ,θ̇) = 0 for all (θ, θ̇) ∈ R
κ × R

κ. Therefore, using a Taylor expansion with remainder, along with the

fact that K̂ is quadratic in the θ̇is, one obtains:

W ′(t) =
((

∂2µ

∂θ̇k∂xi
◦ ψ−1(0, θ(t), 0) + 1

2
∂3µ

∂θ̇k∂xj∂xi
◦ ψ−1(c1x(t), θ(t), 0) · xj(t) +

1
2

∂3µ

∂θ̇ℓ∂θ̇k∂xi
◦ ψ−1(0, θ(t), c2θ̇(t)) · θ̇ℓ(t)

+ 1
4

∂4µ

∂θ̇ℓ∂θ̇k∂xj∂xi
◦ ψ−1(c1x(t), θ(t), c2 θ̇(t)) · θ̇ℓ(t) · xj(t)

)
θ̇k(t)

)
xi(t),

for some reals c1, c2 ∈ (0, 1). Without loss of generality, we assume that φ was chosen so that, in
view of the assumption of local exponential stability of 0e for Sz , there exist reals C1, C2 > 0 such that
|xi(t)| ≤ ‖x(t)‖ ≤ C1‖x0‖e−C2t for i = 1, . . . , 2n. Moreover, since K̂ is positive-definite, quadratic in the

θ̇is, and independent of x, there exist constants C3, C4 > 0 such that C3W (t)
1
2 ≤ |θ̇k(t)| ≤ C4W (t)

1
2 for

k = 1, . . . , κ and t ≥ 0. For i = 1, . . . , 2n and k = 1, . . . , κ let

Ni,k = max
{∣∣∣ ∂2µ

∂θ̇k∂xi
◦ ψ−1(0, θ, 0) + 1

2
∂3µ

∂θ̇k∂xj∂xi
◦ ψ−1(x, θ, 0) · xj

+ 1
2

∂3µ

∂θ̇ℓ∂θ̇k∂xi
◦ ψ−1(0, θ, θ̇) · θ̇ℓ

+ 1
4

∂4µ

∂θ̇ℓ∂θ̇k∂xj∂xi
◦ ψ−1(x, θ, θ̇) · θ̇ℓ · xj

∣∣∣ : (x, θ, θ̇) ∈ V1 × R
κ × V2

}
.

That these maxima exist is an easily deduced consequence of (C3) and (C4), along with the compactness
of V1 and V2. Let C5 = max{Ni,k : i = 1, . . . , 2n, k = 1, . . . , κ}. Note that if a ∈ R, then a ≤ a2 + 1,
hence W (t)1/2 ≤W (t) + 1 for every t for which W (t) is defined. Therefore

W ′(t) ≤ C5|θ̇k(t)||xi(t)|
≤ C4C5(W (t))

1
2 |xi(t)|

≤ C1C4C5(W (t) + 1)‖x0‖e−C2t.

Let ε > 0 be such that {x ∈ R
2n : ‖x‖ < ε} ⊂ V1 and {θ̇ ∈ R

κ : ‖θ̇‖ < ε} ⊂ V2. If ‖x0‖ <
ε/C1 then ‖x(t)‖ < ε for t ≥ 0. Now, the initial value problem ẏ(t) = C1C4C5(y(t) + 1)‖x0‖e−C2t,

y(0) = W (0) = W0, admits the unique solution y(t) = −1 + (1 + W0) exp
(
−C1C4C5

C2
‖x0‖(e−C2t − 1)

)
.

From the “Comparison Lemma” (cf. e.g. [5, Lemma 2.5]), W (t) ≤ y(t) ≤ L(x0,W0) := −1 + (1 +

W0) exp
(
C1C4C5

C2
‖x0‖

)
. Since L is continuous and lim(x0,W0)→(0,0) = 0, there exists δ > 0 such that if

0 < ‖x0‖,W0 < δ, then W (t) ≤ L(x0,W0) <
ε2

κC2
4

for t ≥ 0. Using κC2
3W (t) ≤ ‖θ̇(t)‖2 ≤ κC2

4W (t), t ≥ 0,

we conclude that if ‖θ̇0‖ < δ2 :=
√
κδC3, then W0 < δ and, in turn, ‖θ̇(t)‖2 < ε2. Thus, taking x0 and θ̇0

so that ‖x0‖ < δ1 := min{ε/C1, δ} and ‖θ̇0‖ < δ2, one has (x(t), θ(t), θ̇(t)) ∈ V1 × R
κ × V2 for all t ≥ 0,

which completes the proof.
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