This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.

The following article appeared in Chaos 27, 053109 (2017); and may be found at https://doi.org/10.1063/1.4983523

Generation of multi-scroll attractors without equilibria via piecewise linear systems

R. J. Escalante-González, E. Campos-Cantón, and Matthew Nicol

Citation: Chaos 27, 053109 (2017); doi: 10.1063/1.4983523
View online: https://doi.org/10.1063/1.4983523
View Table of Contents: http://aip.scitation.org/toc/cha/27/5
Published by the American Institute of Physics

Articles you may be interested in

Calculation of Hamilton energy and control of dynamical systems with different types of attractors
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 053108 (2017); 10.1063/1.4983469
Constructing an autonomous system with infinitely many chaotic attractors
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 071101 (2017); 10.1063/1.4986356
Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 033101 (2017); 10.1063/1.4977417
Multi-piecewise quadratic nonlinearity memristor and its 2 N -scroll and $2 \mathrm{~N}+1$-scroll chaotic attractors system Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 033114 (2017); 10.1063/1.4979039

Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 051101 (2017); 10.1063/1.4983470
Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 051102 (2017); 10.1063/1.4983840

Chaos
An Interdisciplinary Journal of Nonlinear Science

Fast Track Your Research. Submit Today!

Generation of multi-scroll attractors without equilibria via piecewise linear systems

R. J. Escalante-González, ${ }^{1, a)}$ E. Campos-Cantón, ${ }^{1,2, \mathrm{~b})}$ and Matthew Nicol ${ }^{2, \mathrm{c})}$
${ }^{1}$ División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P., Mexico
${ }^{2}$ Mathematics Department, University of Houston, Houston, Texas 77204-3008, USA

(Received 19 March 2017; accepted 27 April 2017; published online 17 May 2017)
In this paper, we present a new class of dynamical system without equilibria which possesses a multiscroll attractor. It is a piecewise-linear system which is simple, stable, displays chaotic behavior and serves as a model for analogous non-linear systems. We test for chaos using the 0-1 Test for Chaos from Gottwald and Melbourne [SIAM J. Appl. Dyn. Syst. 8(1), 129-145 (2009)]. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983523]

Abstract

Piecewise-linear (PWL) systems are switching systems composed of linear affine subsystems along with a rule which determines the acting subsystem. These systems are known to be capable of producing chaotic attractors, as in the well studied Chua's circuit. This paper discusses the generation of multiscroll attractors without equilibria based on PWL systems.

I. INTRODUCTION

In recent years, the study of dynamical systems with complicated dynamics but without equilibria has attracted attention. Since the first dynamical system of this kind with a chaotic attractor was introduced in Ref. 1 (Sprott case A), several works have investigated this topic. Several threedimensional (3D) autonomous dynamical systems which exhibit chaotic attractors and whose associated vector fields present quadratic nonlinearities have been reported, for example, Ref. 2 and the 17 NE systems given in Ref. 3. Also, fourdimensional (4D) autonomous systems have been exhibited, such as the four-wing non-equilibrium chaotic system Ref. 7 and the systems with hyperchaotic attractors (equivalently two positive Lyapunov exponents) in Refs. 5 and 6, whose vector fields have quadratic and cubic nonlinearities.

These studies have not been restricted to integer orders; in Ref. 4, a new fractional-order chaotic system without equilibrium points was presented; this system represents the fractional-order counterpart of the integer-order system NE_{6} studied in Ref. 3.

The first piecewise linear system without equilibrium points with an hyperchaotic attractor was reported in Ref. 8. This system was based on the diffusion-less Lorenz system by approximating the quadratic nonlinearities with the sign and absolute value functions. Recently, in Ref. 9, a class of PWL dynamical systems without equilibria was reported. The attractors exhibited by these systems can be easily shifted along the x axis by displacing the switching plane.

[^0]In fact, the attractors generated by these systems without equilibria fulfill the definition of hidden attractor given in Ref. 10.

In this paper, we present a new class of PWL dynamical system without equilibria that generates a multiscroll attractor. It is based on linear affine transformations of the form $A \boldsymbol{x}+B$, where A is a 3×3 matrix with two complex conjugate eigenvalues with positive real part and the third eigenvalue either zero, slightly negative or positive. The construction for A having a zero eigenvalue is presented in Section II, and the case when no eigenvalue of A is zero due to a perturbation is presented in Section III; numerical simulations are provided for both cases.

II. PWL DYNAMICAL SYSTEM WITH MULTISCROLL ATTRACTOR: SINGULAR MATRIX CASE

We will first present the construction where A has two complex conjugate eigenvalues with positive real part and the third eigenvalue is zero. In section III, we will study the effect of allowing the zero eigenvalue to become slightly negative $-\epsilon$ or slightly positive ϵ for a parameter $\epsilon>0$. In order to introduce the new class of PWL dynamical system, we first review some useful theorems used in the construction. The next theorem gives necessary and sufficient conditions for the absence of equilibria in a system based on a linear affine transformation. These systems will be used as sub-systems for the PWL construction.

Theorem 1. ${ }^{9}$ Given a dynamical system based on an affine transformation of the form $\dot{\boldsymbol{x}}=A \boldsymbol{x}+B$, where $\boldsymbol{x} \in \mathbb{R}^{n}$ is the state vector, $B \in \mathbb{R}^{n}$ is a nonzero constant vector, and $A \in \mathbb{R}^{n \times n}$ is a linear operator, the system possesses no equilibrium point if and only if

- A is not invertible and
- B is linearly independent of the set of non-zero vectors comprised by columns of the operator A.

The next theorem tells us, for a specific type of linear operator, which vectors are linearly independent of the nonzero column vectors of the associated matrix of the operator which will help us to fulfill the conditions in Theorem 1.

Theorem 2. Suppose $A \in \mathbb{R}^{3 \times 3}$ is a linear operator whose characteristic polynomial has zero as a single root (so that zero has algebraic multiplicity one). Then, any eigenvector associated with zero is linearly independent of the column vectors of the matrix A.

Proof. By considering the Jordan Canonical Form, there is an invariant subspace U of two dimensions corresponding to the other non-zero eigenvalues (either two real eigenvalues or a complex conjugate pair of eigenvalues $a+i b, a-i b$ with $b \neq 0$) and a one dimensional invariant subspace V corresponding to the eigenvalue $\lambda=0$. Thus, $U \oplus V=\mathbb{R}^{3}$ and A restricted to U is invertible; hence, $A U \subset U$. If $x \in \mathbb{R}^{3}$, then we may write (uniquely) $x=x_{u} \oplus x_{v}$, where $x_{u} \in U$ and $x_{v} \in V$. Then, $A x=A x_{u}+A x_{v}=A x_{u}$ as $A x_{v}=0$. Since $A x_{u} \subset U$, we cannot solve $A x=w$, where $w \in V$ is a nonzero vector.

We will illustrate our mechanism for producing multiscroll chaotic attractors via a detailed example.

A. Example

Consider a dynamical system whose associated vector field is the linear system

$$
\begin{equation*}
\dot{x}=A \boldsymbol{x} \tag{1}
\end{equation*}
$$

where $\boldsymbol{x} \in \mathbb{R}^{3}$ is the state vector, and $A \in \mathbb{R}^{3 \times 3}$ is a linear operator. The matrix A has eigenvalues $\lambda_{i}, i=1,2,3$, where λ_{1}, λ_{2} are complex conjugate eigenvalues with positive real part while $\lambda_{3}=0$.

To illustrate this class of dynamical systems with multiscroll attractors, consider the model system with a vector field of the form (1) in \mathbb{R}^{3} whose matrix A is given as follows:

$$
A=\left[\begin{array}{ccc}
m & -n & 0 \tag{2}\\
n & m & 0 \\
0 & 0 & 0
\end{array}\right], \quad A=\left[a_{1}, a_{2}, a_{3}\right]
$$

where a_{1}, a_{2}, and a_{3} are the column vectors of the matrix A and we suppose $m>0$ and $n \neq 0$. The eigenvectors V associated with the eigenvalue $\lambda=0$ are given as follows:

$$
\begin{equation*}
V=(0,0, v)^{T} \tag{3}
\end{equation*}
$$

with $v \neq 0$.
Note that A is of rank two and its column space equals the two-dimensional unstable subspace $\left\langle a_{1}, a_{2}\right\rangle$. We will now consider the vector field formed by adding a vector $k_{1} a_{1}+k_{2} a_{2}$ in the span of the column vectors of the linear operator A

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x}+k_{1} a_{1}+k_{2} a_{2} . \tag{4}
\end{equation*}
$$

Using the matrix A given by (2), we have the following linear system:

$$
\dot{\boldsymbol{x}}=\left[\begin{array}{ccc}
m & -n & 0 \tag{5}\\
n & m & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1}+k_{1} \\
x_{2}+k_{2} \\
x_{3}
\end{array}\right] .
$$

Considering the following change of variables $y_{1}=x_{1}+k_{1}$, $y_{2}=x_{2}+k_{2}$, and $y_{3}=x_{3}$, the system (5) is given as follows:

$$
\dot{\boldsymbol{y}}=\left[\begin{array}{ccc}
m & -n & 0 \tag{6}\\
n & m & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=A \boldsymbol{y}
$$

so that the rotation in the unstable subspace is around the axis given by the line

$$
\left[\begin{array}{c}
-k_{1} \\
-k_{2} \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

If a non-zero vector V in the neutral direction is added, then the point

$$
\left[\begin{array}{c}
-k_{1} \\
-k_{2} \\
0
\end{array}\right]
$$

is no longer an equilibrium, and the vector field at this point is equal to

$$
V=\left[\begin{array}{l}
0 \\
0 \\
v
\end{array}\right]
$$

so that

$$
\begin{equation*}
\dot{\boldsymbol{y}}=A \boldsymbol{y}+V . \tag{7}
\end{equation*}
$$

The solution of the initial value problem X_{0} for (7) is given by

$$
\begin{align*}
& \boldsymbol{y}(\boldsymbol{t})= {\left[\begin{array}{ccc}
e^{m t} \cos (n t) & -e^{m t} \sin (n t) & 0 \\
e^{m t} \sin (n t) & e^{m t} \cos (n t) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0) \\
y_{3}(0)
\end{array}\right] } \\
&+\left[\begin{array}{c}
0 \\
0 \\
v * t
\end{array}\right], \tag{8}\\
& \boldsymbol{x}(\boldsymbol{t})=e^{m t}\left[\begin{array}{ccc}
\cos (n t) & -\sin (n t) & 0 \\
\sin (n t) & \cos (n t) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1}(0)+k_{1} \\
x_{2}(0)+k_{2} \\
x_{3}(0)
\end{array}\right] \\
&+\left[\begin{array}{c}
-k_{1} \\
-k_{2} \\
v * t
\end{array}\right] . \tag{9}
\end{align*}
$$

We wish to generate a "saddle-focus like" behavior which bounds motion, and so, a piecewise linear system is constructed as follows. A switching surface S will be a hyperplane oriented by its positive normal. S divides \mathbb{R}^{3} into two connected components, if a point \boldsymbol{x} lies in the component pointed to by the positive normal of S we will write $x>S$.

To illustrate we take our switching surface to be $x_{3}=0$ and define a flow on S by

$$
\dot{\boldsymbol{x}}= \begin{cases}A \boldsymbol{x}+W, & \text { if } x_{1}<0 \tag{10}\\ A \boldsymbol{x}-W, & \text { if } x_{1} \geq 0\end{cases}
$$

The vector W is chosen in the plane S (hence in the unstable subspace of A), with sign such that the x_{1} component of p_{1} $:=-A_{\mid S}^{-1} W$ is positive. This ensures that the flow on $S \cap$ $\left\{x_{1}<0\right\}$ has an unstable focus at p_{1}, while the flow on $S \cap$ $\left\{x_{1} \geq 0\right\}$ has an unstable focus at $-p_{1}$. Thus, there is no equilibria for the PWL flow on S. Next, we define the flow on $x>S$ and $x<S$

$$
\dot{\boldsymbol{x}}= \begin{cases}A \boldsymbol{x}+V+W, & \text { if } \boldsymbol{x}<S, x_{1}<0 \tag{11}\\ A \boldsymbol{x}+V-W, & \text { if } \boldsymbol{x}<S, x_{1} \geq 0 \\ A \boldsymbol{x}-V+W, & \text { if } \boldsymbol{x}>S, x_{1}<0 \\ A \boldsymbol{x}-V-W, & \text { if } \boldsymbol{x}>S ; x_{1} \geq 0\end{cases}
$$

where we choose the direction of V so that the dynamical system defined by (11) $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ gives the motion of the points towards the switching plane S.

See Figure 1 where $W=k_{1} a_{1}+k_{2} a_{2}$ and the plane S is given by $x_{3}=\tau$. With a pair of systems $F_{1}(x), F_{3}(x)$ defined by parallel switching surfaces S_{1}, S_{3}, respectively, similar to those described by (10) and (11) along with another switching surface S_{2} transverse to the other two, it is possible to generate multiscroll attractors. For example, a double scrollattractor can be generated with the following Piecewise Linear System provided that $F_{3}(\boldsymbol{x})$ is correctly displaced:

$$
\dot{\boldsymbol{x}}= \begin{cases}F_{1}(\boldsymbol{x}), & \text { if } \boldsymbol{x}<S_{2} \tag{12}\\ F_{3}(\boldsymbol{x}), & \text { if } \boldsymbol{x} \geq S_{2}\end{cases}
$$

Note that switching surfaces S_{1} and S_{3} are used to generate two "saddle-focus like" behavior, and switching surface S_{2} is used to commute between these two "saddle-focus like" behavior (see Fig. 2). The surface S_{2} is responsible for the stretching and folding behavior in the system in order to generate chaos. This switching surface is constrained to be transverse to the unstable manifold and neutral manifold. Note that the planes S_{1}, S_{2}, and S_{3} are not invariant under the flow defined by (12).

FIG. 1. A "saddle-focus like" locate at the point $Q=\left(-k_{1},-k_{2}, \tau\right)$.

FIG. 2. A mechanism to generate a double-scroll chaotic attractors without equilibria.

It is possible to define a system with 3 -scroll attractors, for example, as follows (see Fig. 3):

$$
\dot{\boldsymbol{x}}= \begin{cases}F_{1}(\boldsymbol{x}), & \text { if } \boldsymbol{x}<S_{2} \tag{13}\\ F_{2}(\boldsymbol{x}), & \text { if } S_{2} \leq \boldsymbol{x}<S_{4} \\ F_{3}(\boldsymbol{x}), & \text { if } \boldsymbol{x} \geq S_{4}\end{cases}
$$

Such a system demonstrates the chaotic nature of the associated flow via symbolic dynamics. If we take small ϵ-neighborhoods of the surfaces S_{1}, S_{3}, and S_{5} and record a 1,

FIG. 3. A mechanism to generate a triple-scroll chaotic attractors without equilibria.

FIG. 4. Attractor of the system (15) with A and V given in (14) for the initial condition $(0,0,0)$ in (a) the space $\left(x_{1}, x_{2}, x_{3}\right)$ and its projections onto the planes: (b) $\left(x_{1}, x_{2}\right)$, (c) $\left(x_{1}, x_{3}\right)$, and (d) $\left(x_{2}, x_{3}\right)$. In (e), the largest Lyapunov exponent.

3 , or 5 each time a trajectory under the flow crosses into that neighborhood from outside that neighborhood we generate a shift on the space $\{1,3,5\}^{N}$. Both the symbol sequences 135,131 and correspondingly 535 and 531 may occur, and the symbol sequences generated are complex, non-periodic and we call them "chaotic." How disordered the system is in terms of entropy, for example, is a subject for another paper.

B. Numerical simulations

Example 1. Figure 4 shows a double scroll attractor which was obtained by using 4th order Runge Kutta (0.01 integration step) and considering the following matrix A and vector V :

$$
A=\left[\begin{array}{ccc}
0.5 & -10 & 0 \tag{14}\\
10 & 0.5 & 0 \\
0 & 0 & 0
\end{array}\right], \quad V=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]
$$

with PWL system (details can be seen in Appendix A)

$$
\begin{equation*}
\dot{\boldsymbol{x}}=F_{i}(\boldsymbol{x}), \quad i=1, \ldots, 12 \tag{15}
\end{equation*}
$$

The switching surface are given by the planes $S_{1}: x_{3}$ $=0, S_{2}: x_{1}+x_{3} / 2=1$ and $S_{3}: x_{3}=2$. The vectors W_{i}, with $i=1, \ldots, 4$ are given in Table III (see Appendix A).

The resulting attractor with a double scroll is shown in the Figure 4(a) and its projections on the planes $\left(x_{1}, x_{2}\right)$, $\left(x_{1}, x_{3}\right)$, and (x_{2}, x_{3}) in Figures 4(b)-4(d), respectively. Its largest Lyapunov exponent calculated is $\lambda=0.97$ (Figure 4(e)).

It can be extended to a triple scroll attractor by considering the system given by (13) with the additional surfaces S_{4} : $x_{1}+x_{3} / 2=3$ and $S_{5}: x_{3}=4$ and W_{i}, with $i=1, \ldots, 6$ given in Table III (see Appendix A).

The resulting attractor with a triple scroll is shown in the Figure 5(a) and its projections on the planes $\left(x_{1}, x_{2}\right),\left(x_{1}\right.$, $\left.x_{3}\right)$ and $\left(x_{2}, x_{3}\right)$ in Figures $5(\mathrm{~b})-5(\mathrm{~d})$, respectively. Its largest Lyapunov exponent calculated is $\lambda=1.056$ (Figure 5(e)).

Assigning the numbers 1,3 , and 5 to the regions where $\boldsymbol{x}<S_{2}, S_{2} \leq \boldsymbol{x}<S_{4}$, and $\boldsymbol{x} \geq S_{4}$, respectively, the symbol

FIG. 5. Triple scroll attractor for the initial condition $(0,0,0)$ in (a) the space $\left(x_{1}, x_{2}, x_{3}\right)$ and its projections onto the planes: (b) $\left(x_{1}, x_{2}\right)$, (c) $\left(x_{1}, x_{3}\right)$, and (d) $\left(x_{2}, x_{3}\right)$. In (e), the largest Lyapunov exponent.
sequences $135,131,535$, and 531 may be produced. Table I shows three sequences for different close initial conditions.

Later, we show that this system passes the $0-1$ Test for Chaos of Ref. 11, justifying our description of chaotic motion.

III. SMALL PERTURBATIONS OF THE ZERO
 EIGENVALUE: PWL DYNAMICAL SYSTEM $\dot{x}=A x+B$ WITH MULTISCROLL ATTRACTOR AND INVERTIBLE A

Now we consider perturbing the real eigenvalue. Consider the matrix A_{η}, where

$$
A=\left[\begin{array}{ccc}
m & -n & 0 \tag{16}\\
n & m & 0 \\
0 & 0 & \eta
\end{array}\right], \quad A=\left[a_{1}, a_{2}, a_{3}\right]
$$

where a_{1}, a_{2}, and a_{3} are the column vectors of the matrix A and we suppose $m>0$ and $n \neq 0$. The eigenvectors V associated with the eigenvalue $\lambda=\eta$ are given as follows:

$$
\begin{equation*}
V=(0,0, v)^{T} \tag{17}
\end{equation*}
$$

with $v \neq 0$.
The column space of A equals the two-dimensional unstable subspace $\left\langle a_{1}, a_{2}\right\rangle$. As before, we consider the vector field formed by adding a vector $k_{1} a_{1}+k_{2} a_{2}$ in the span of the column vectors.

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A \boldsymbol{x}+k_{1} a_{1}+k_{2} a_{2} \tag{18}
\end{equation*}
$$

TABLE I. Sequences produced by the system from example 1 starting from three close to zero initial conditions for a 50 s simulation with a RK4 of step $=0.01$.

$x(0)$	Sequence
$(0.0,0.0,0.0)$	13135313135353531313535
$(0.0,0.1,0.0)$	131313535313135313135
$(-0.1,0,-0.1)$	13135353135313531353531

Using the matrix A given by (16), we have the following linear system:

$$
\dot{\boldsymbol{x}}=\left[\begin{array}{ccc}
m & -n & 0 \tag{19}\\
n & m & 0 \\
0 & 0 & \eta
\end{array}\right]\left[\begin{array}{c}
x_{1}+k_{1} \\
x_{2}+k_{2} \\
x_{3}
\end{array}\right] .
$$

As before the solution of the initial value problem is given by

$$
\begin{align*}
\boldsymbol{x}(\boldsymbol{t})= & {\left[\begin{array}{ccc}
e^{m t} \cos (n t) & -e^{m t} \sin (n t) & 0 \\
e^{m t} \sin (n t) & e^{m t} \cos (n t) & 0 \\
0 & 0 & e^{\eta t}
\end{array}\right] } \\
& \times\left[\begin{array}{c}
x_{1}(0)+k_{1} \\
x_{2}(0)+k_{2} \\
x_{3}(0)
\end{array}\right]+\left[\begin{array}{c}
-k_{1} \\
-k_{2} \\
\frac{v}{\eta}\left(e^{\eta t}-1\right)
\end{array}\right] . \tag{20}
\end{align*}
$$

Consider the equation $\dot{x}=\eta x+w$ which has solution $x(t)=e^{\eta t}\left[x(0)+\frac{w}{\eta}\right]-\frac{w}{\eta}$. Suppose that the sign of v is such
that the flow is directed toward S_{1} in Figure 1. So, \dot{x}_{3} $=\eta x_{3}-|v|$ if $x_{3}(0)>0$ and $\dot{x}_{3}=\eta x_{3}+|v|$ if $x_{3}(0)<0$. If $\eta<0$ and $x_{3}(0)>0$ then $\lim _{t \rightarrow \infty} x_{3}(t)=\frac{|v|}{\eta}$, so that the flow in Figure 1 still intersects S_{1} from an initial condition $x_{3}(0)>0$. Similarly, if $x_{3}(0)<0$ then the flow intersects S_{1}. Thus, the topological structure of the flow is unchanged for small $|\eta|, \eta<0$

However, if $\eta>0$ then $\lim _{t \rightarrow \infty} x_{3}(t) \rightarrow \infty$ if $x_{3}(0)>\frac{|v|}{\eta}$ and $\lim _{t \rightarrow \infty} x_{3}(t) \rightarrow-\infty$ for $x_{3}(0)<-\frac{|v|}{\eta}$. So, in this case, there is a neighborhood of S_{1} of points closer than $\left|\frac{|v|}{\eta}\right|$ to S_{1} consisting of points attracted to S_{1}. Otherwise, points are repelled from S_{1}.

Consider now the solution where the sign of v is such that the flow is directed away from S_{1} in Figure 1. So, \dot{x}_{3} $=\eta x_{3}+|v|$ if $x_{3}(0)>0$ and $\dot{x}_{3}=\eta x_{3}-|v|$ if $x_{3}(0)<0$.

Clearly, if $\eta>0$ and $x_{3}(0)>0$ then $\lim _{t \rightarrow \infty} x_{3}(t)=\infty$ and if $\eta>0$ and $x_{3}(0)<0$, then $\lim _{t \rightarrow \infty} x_{3}(t)=-\infty$. However, if $\eta<0$ and $x_{3}(0)>0$ then $\lim _{t \rightarrow \infty} x_{3}(t)=\frac{-|v|}{\eta}$ and if $\eta<0$ and $x_{3}(0)<0$ then $\lim _{t \rightarrow \infty} x_{3}(t)=\frac{|v|}{\eta}$. Thus, for small $|\eta|$ the multi-scroll attractors persist.

A. Numerical simulations

Example 2. As an example of this construction with an invertible matrix, consider the system described by

$$
\begin{equation*}
\dot{x}=F_{i}(\boldsymbol{x}), \quad i=1, \ldots, 18 \tag{21}
\end{equation*}
$$

Details of the function (21) are given in Appendix B. The linear operator and the vector V are given as follows:

$$
A=\left[\begin{array}{ccc}
0.5 & -10 & 0 \tag{22}\\
10 & 0.5 & 0 \\
0 & 0 & 0.1
\end{array}\right], \quad V=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right] .
$$

The switching surfaces are given by the planes $S_{1}: x_{3}$ $=0, S_{2}: x_{1}+x_{3} / 2=1, S_{3}: x_{3}=2, S_{4}: x_{1}+x_{3} / 2=3, S_{5}: x_{3}=4$. The vectors W_{i}, with $i=1, \ldots, 6$ are given in Table III (see Appendix A).

The resulting attractor obtained by using a 4th order Runge Kutta (0.01 integration step) is shown in Figure 6.

Assigning the numbers 1,3 , and 5 to the regions where $\boldsymbol{x}<S_{2}, S_{2} \leq \boldsymbol{x}<S_{4}$, and $\boldsymbol{x} \geq S_{4}$, respectively, the symbol sequences $135,131,535$, and 531 may be produced. Table II shows three sequences generated from different close to zero initial conditions.

As for the previous system, we show in Sec. IV that this system passes the $0-1$ Test for Chaos of Ref. 11, justifying our description of chaotic motion.

IV. DYNAMICS OF THE PROPOSED SYSTEMS

To test for chaotic dynamics in the systems we have investigated, we used the test algorithm proposed in Ref. 11. The input for the test is a one dimensional time series $\phi(n)$ which drives a two-dimensional system $P Q(\phi(n), c)$ as described in Ref. 11, namely,

$$
\begin{aligned}
& p_{c}(n)=\sum_{j=1}^{n} \phi(j) \cos (j c) \\
& q_{c}(n)=\sum_{j=1}^{n} \phi(j) \sin (j c)
\end{aligned}
$$

where $c \in(0,2 \pi)$ is a real parameter. The rate of growth of the variance of this system distinguishes between chaotic ($K=1$) and regular motion $(K=0)$ as determined by a derived quantity K.

For both systems with a triple scroll attractor previously introduced, three-dimensional time series were generated by means of a RK4 integrator with a time step equal to 0.01 , which was then sampled T time $\tau=0.25$ to get three-

TABLE II. Sequences produced by the system from example 2 starting from three close to zero initial conditions for a 50 s simulation with a RK4 of step $=0.01$.

$x(0)$	Sequence
$(0.1,0.1,0.1)$	123232121232121232323
$(0.0,0.1,0.0)$	1212321232121212123
$(-0.1,0,-0.1)$	123212121212321232321

FIG. 7. Asymptotic growth rates $K c$ calculated for the triple scroll attractor systems presented in Secs. II(a) and III(b).
dimensional time series of length $N=2000$. The onedimensional time-series was given by $\phi \circ T^{n}\left(p_{0}\right)$ for initial conditions $p_{0}=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ and $\phi\left(x_{1}, x_{2}, x_{3}\right)=x_{3}$, so that we were observing the z-component of a trajectory under the time-T map of the flow.

The growth rates calculated were $K=0.9930$ and $K=0.9962$ for the first and second example, respectively. As described in Ref. 11, K is calculated as the median value of the asymptotic growth rates of a growth rate K_{c} for different values of the parameter c belonging to the two-dimensional driven system. In Figures 7(a) and 7(b), the K_{c} values are shown. Thus, our system, according to the $0-1$ test, is chaotic.

TABLE III. Vectors W_{i} for $i=1, \ldots, 6$.

W_{i}	k_{1}	k_{2}
W_{1}	-0.1	0
W_{2}	0.1	0
W_{3}	-1.1	0
W_{4}	-0.9	0
W_{5}	-2.1	0
W_{6}	-1.9	0

V. CONCLUSION

In this paper, new classes of piecewise linear dynamical systems (with no equilibria) which present multiscroll attractors were introduced. The systems are very simple geometrically and stable to perturbation. The attractors generated by these classes have a similar chaotic behavior. Further investigation, via perhaps symbolic dynamics, is needed to quantify the disorder of the system.

ACKNOWLEDGMENTS

R.J. Escalante-González, a Ph.D. student of control and dynamical systems at IPICYT, is thankful to CONACYT (Mexico) for the scholarship granted (Register No. 337188). E. Campos-Cantón acknowledges CONACYT for financial support for sabbatical at Department of Mathematics, University of Houston. He would also like to thank the University of Houston for his sabbatical support and to Professor Matthew Nicol for allowing him to work with him and his valuable discussions on dynamical systems. M. Nicol is thankful to NSF for partial support on NSF-DMS Grant No. 1600780.

APPENDIX A: PWL DESCRIPTION OF A SYSTEM WITH DOUBLE SCROLL ATTRACTOR

System described by (15)

$$
\dot{\boldsymbol{x}}= \begin{cases}A \boldsymbol{x}+V+W_{1}, & \text { if } \boldsymbol{x}<S_{1}, x_{1}<0 \tag{A1}\\ A \boldsymbol{x}+V+W_{2}, & \text { if } \boldsymbol{x}<S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 \\ A \boldsymbol{x}+W_{1}, & \text { if } \boldsymbol{x} \in S_{1}, x_{1}<0 \\ A \boldsymbol{x}+W_{2}, & \text { if } \boldsymbol{x} \in S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 \\ A \boldsymbol{x}-V+W_{1}, & \text { if } \boldsymbol{x}>S_{1}, \boldsymbol{x}<S_{2}, x_{1}<0 \\ A \boldsymbol{x}-V+W_{2}, & \text { if } \boldsymbol{x}>S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 \\ A \boldsymbol{x}+V+W_{3}, & \text { if } \boldsymbol{x}<S_{3}, \boldsymbol{x} \geq S_{2}, x_{1}<1 \\ A \boldsymbol{x}+V+W_{4}, & \text { if } \boldsymbol{x}<S_{3}, \boldsymbol{x} \geq S_{2}, x_{1} \geq 1 \\ A \boldsymbol{x}+W_{3}, & \text { if } \boldsymbol{x} \in S_{3}, \boldsymbol{x} \geq S_{2}, x_{1}<1 \\ A \boldsymbol{x}+W_{4}, & \text { if } \boldsymbol{x} \in S_{3}, x_{1} \geq 1 \\ A \boldsymbol{x}-V+W_{3}, & \text { if } \boldsymbol{x}>S_{3}, \boldsymbol{x} \geq S_{2}, x_{1}<1 \\ A \boldsymbol{x}-V+W_{4}, & \text { if } \boldsymbol{x}>S_{3}, x_{1} \geq 1\end{cases}
$$

The switching surface are given by the planes $S_{1}: x_{3}$ $=0, S_{2}: x_{1}+x_{3} / 2=1$ and $S_{3}: x_{3}=2$. The vectors W_{i}, with $i=1, \ldots, 4$ are given in Table III.

APPENDIX B: PWL DESCRIPTION OF A SYSTEM WITH TRIPLE SCROLL ATTRACTOR

System described by (21)

$$
\dot{\boldsymbol{x}}= \begin{cases}A \boldsymbol{x}+V+W_{1}, & \text { if } \boldsymbol{x}<S_{1}, x_{1}<0 ; \\ A \boldsymbol{x}+V+W_{2}, & \text { if } \boldsymbol{x}<S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 ; \\ A \boldsymbol{x}+W_{1}, & \text { if } \boldsymbol{x} \in S_{1}, x_{1}<0 ; \\ A \boldsymbol{x}+W_{2}, & \text { if } \boldsymbol{x} \in S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 ; \\ A \boldsymbol{x}-V+W_{1}, & \text { if } \boldsymbol{x}>S_{1}, \boldsymbol{x}<S_{2}, x_{1}<0 ; \\ A \boldsymbol{x}-V+W_{2}, & \text { if } \boldsymbol{x}>S_{1}, \boldsymbol{x}<S_{2}, x_{1} \geq 0 ; \\ A \boldsymbol{x}+V+W_{3}, & \text { if } \boldsymbol{x}<S_{3}, \boldsymbol{x} \geq S_{2}, x_{1}<1 ; \\ A \boldsymbol{x}+V+W_{4}, & \text { if } \boldsymbol{x}<S_{3}, \boldsymbol{x} \geq S_{2}, \boldsymbol{x}<S_{4}, x_{1} \geq 1 ; \\ A \boldsymbol{x}+W_{3}, & \text { if } \boldsymbol{x} \in S_{3}, \boldsymbol{x} \geq S_{2}, x_{1}<1 ; \\ A \boldsymbol{x}+W_{4}, & \text { if } \boldsymbol{x} \in S_{3}, \boldsymbol{x}<S_{4}, x_{1} \geq 1 ; \\ A \boldsymbol{x}-V+W_{3}, & \text { if } \boldsymbol{x}>S_{3}, \boldsymbol{x} \geq S_{2}, \boldsymbol{x}<S_{4}, x_{1}<1 ; \\ A \boldsymbol{x}-V+W_{4}, & \text { if } \boldsymbol{x}>S_{3}, \boldsymbol{x}<S_{4}, x_{1} \geq 1, \\ A \boldsymbol{x}+V+W_{5}, & \text { if } \boldsymbol{x}<S_{5}, \boldsymbol{x} \geq S_{4}, x_{1}<2 ; \\ A \boldsymbol{x}+V+W_{6}, & \text { if } \boldsymbol{x}<S_{5}, \boldsymbol{x} \geq S_{4}, x_{1} \geq 2 ; \\ A \boldsymbol{x}+W_{5}, & \text { if } \boldsymbol{x} \in S_{5}, \boldsymbol{x} \geq S_{4}, x_{1}<2 ; \\ A \boldsymbol{x}+W_{6}, & \text { if } \boldsymbol{x} \in S_{5}, x_{1} \geq 2 ; \tag{B1}\\ A \boldsymbol{x}-V+W_{5}, & \text { if } \boldsymbol{x}>S_{5}, \boldsymbol{x} \geq S_{4}, x_{1}<2 ; \\ A \boldsymbol{x}-V+W_{6}, & \text { if } \boldsymbol{x}>S_{5}, x_{1} \geq 2 .\end{cases}
$$

${ }^{1}$ J. C. Sprott, "Some simple chaotic flows," Phys. Rev. E 50(2), 647-650 (1994).
${ }^{2} \mathrm{X}$. Wang and G. Chen, "Constructing a chaotic system with any number of equilibria," Nonlinear Dyn. 71, 429-436 (2013).
${ }^{3}$ S. Jafari, J. C. Sprott, and S. Mohammad Reza Hashemi Golpayegani, "Elementary quadratic chaotic flows with no equilibria," Phys. Lett. A 377, 699-702 (2013).
${ }^{4}$ D. Cafagna and G. Grassi, "Chaos in a new fractional-order system without equilibrium points," Commun. Nonlinear Sci. Numer. Simul. 19, 2919-2927 (2014).
${ }^{5}$ Z. Wang, S. Cang, E. Oketch Ochola, and Y. Sun, "A hyperchaotic system without equilibrium," Nonlinear Dyn. 69, 531-537 (2012).
${ }^{6}$ V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, and S. Takougang Kingni, "A no-equilibrium hyperchaotic system with a cubic nonlinear term," Optik 127, 3259-3265 (2016).
${ }^{7}$ Y. Lin, C. Wang, H. He, and L. Li Zhou, "A novel four-wing non-equilibrium chaotic system and its circuit implementation," Pramana-J. Phys. 86(4), 801-807 (2016).
${ }^{8}$ C. Li, J. Clinton Sprott, W. Thio, and H. Zhu, "A new piecewise linear Hyperchaotic circuit," Trans. Circuits Syst. II 61(12), 977-981 (2014).
${ }^{9}$ R. J. Escalante-Gonzalez and E. Campos-Canton, "Generation of chaotic attractors without equilibria via piecewise linear systems," Int. J. Mod. Phys. C 28(1), 1750008 (2017).
${ }^{10}$ D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, and A. Prasad, "Hidden attractors in dynamical systems," Phys. Rep. 637, 1-50 (2016).
${ }^{11}$ G. A. Gottwald and I. Melbourne, "The 0-1 test for chaos: A review," SIAM J. Appl. Dyn. Syst. 8(1), 129-145 (2009).

[^0]: ${ }^{\text {a) }}$ Electronic mail: rodolfo.escalante@ipicyt.edu.mx
 ${ }^{\text {b) }}$ Electronic mail: eric.campos@ipicyt.edu.mx
 ${ }^{\text {c) }}$ Electronic mail: nicol@math.uh.edu

