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Adaptive Observers with Persistency of Excitation
for Synchronization of Chaotic Systems

Antonio Loria, Elena Panteley, Arturo Zavala-Rio

Abstract— We address the problem of master-slave synchro- recurrently investigated in synchronization of chaotisteyns
nization of chaotic systems under parameter uncertainty ad are: 1) under which conditions systems synchronize (vabfies
with partial measurements. Our approach is based on observe hysical parameters, initial conditioretc) andconsequently

design theory hence, we view the master dynamics as a syste d hich diti is able to desi haoti
of differential equations with a state and a measurable outpt ) under which conditions one is able to design chaotic sys-

and we design an observer (tantamount to the slave system) tems that SynChronize with others? To answer the first q]mEStI
which reconstructs the dynamic behavior of the master. The min  Lyapunov stability theory may be usedf-[17], [18], [19],

technical condition that we impose ispersistency of excitation for the second, distinct control approaches have been put to
(PE), a property well studied in the adaptive control literature. test -¢f. [7], [12], [13], [14], [6]. Some papers rely on analytic

In the case of unknown parameters and partial measurements .
we show that synchronization is achievable in a practical sese, study —[20], [21], [8] and others on numerical methods and

that is, with “small” error. We also illustrate our methods on Validation in simulation €f. [22], [23], [16]. Beyond stability
particular examples of chaotic oscillators such as the Lomez theory, work on synchronization analysis includes the ystud

and the Lu oscillators.. Theoretical prqofs are provided based on of synchronization imetworks of oscillators-cf. [24], [25],
recent results on stability theory for time-varying systens. [26], [27], [28], [29], relying on tools frome.g, graph theory.
Fundamental work on pinning-controllability just appehie
[24]. In [26] conditions are established in terms of the ager
o coupling path lengths among network nodes; see also [2%]. Th
A. On controlled synchronization recent paper [28] establishegnchronizability in terms of
Since the seminal work of Blekhman [1] systems synchrgonditions on parameters of the probability distributidmtt
nization has attracted growing attention in different stifee governs the topological changes of the network. A number
communities, ranging from that of physics, electrical engof articles establishfast — switching conditions relying
neering, control theory, signal processing, to mentionva feon averaging techniques (also well-known in the theory of
Synchronization appears in different ways and circums&ancystems stability). In the recent paper [27] it is estalgitsthat
but mainly in the so-callednaster-slaveconfiguration, in synchronization may occur even if connections are instanta
which a leader system marks the pace to a follower system, arebusly lost ‘at times’ as long as the interconnection anaihg
mutualin which generally more than two systems synchronizeodes is kepin average Other recent articles relying on fast-
their motion with respect to each other without any hiergrchswitching conditions include [30] which deals with stodias
We focus on the problem of master-slave synchronization wfodelsi.e., the nodes’ couplings switch on and off randomly.
chaotic systems. This was mainly initiated by the celelorate The method presented in [15] which may also be re-casted
paper of Pecora and Carroll [2] and has triggered a numberinfthe context of identification plus synchronization relien
works in the subject, motivated by applications such asifbtit synchronizing the master and slave systems under parameter
exclusively) encoding of information for secure transriaiss- uncertainty at the expense of synchronization mismatch, the
cf. e.g, [3], [4], [5], [6], [7], [8], [9]. During the last 15 years an adaptive algorithm is activateldcally to estimate the
or so, a number of methods to establish synchronization pdrameters. The article [16] has triggered many other wonks
chaotic systems have been proposed in more or less geyeratitlaptive synchronization and identification of chaotideys.
for instance, focussed on the Lorenz system: [10], [11], [5]owever, as pointed out for instance in [31], [17] the method
(one of the most popular chaotic oscillators) or coverinigom [16] does not workn general in [31] an alternative proof
relatively general classes of chaotic oscillatoes [12], [13], for parametric convergence is given which relies on La Salle
[14], [6], [7], [15], [16]. invariance principle or, a variant of it seemingly for chiaot
Beyond those of Physics and Electrical Engineering, viewystems. In [17] a proof of convergence of synchronization
points that have proved to be useful to synchronizationtat terrors is established following “signal-chasing” argunsen
from control theory for design methods, and that frstability ~standard in adaptive control theory but parametric corerecg
theory, for analysis. Indeed, two general questions that ai® not established, it is only observed (for the particular
case of the Lorenz system) that parameters converge when
Copyright (c) 2009 IEEE. Personal use of this material isypged. How- ~ the system is in a chaotic or in a periodic regime —this is
ever, permission to use this material for any other purpasest be obtained w . . .
from the IEEE by sending an email fubs- per mi ssi ons@eee. org.  Stressed as an “interesting phenomenon which remains to be
A. Loria and E. Panteley are with CNRS, LSS-SUPELEC, 3 Rumtlo further investigated”. This phenomenon has been studied an
Curie, 91192 Gif s/Yvette, France (e-mail:loria@lss.$epdr).
Arturo Zavala-Rio is with the Instituto Potosino de Inigation Cientifica Iwhile we are not aware of a precise formulation of La Salletsmiiance

y Tecnologica, Apdo. Postal 2-66, 78216 San Luis Potodi,PS Mexico principle for chaotic systems we stress that this theorems dwt apply in
(e-mail: azavala@ipicyt.edu.mx). general to time-varying systems (except periodic).

I. INTRODUCTION
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explained recently in [32] in terms of so-callpérsistency of [50] deal withlinear time-varying systems and both parametric
excitation (PE). As a matter of fact, this notion is known inand state estimation errors are guaranteed to converge unde
adaptive control literature for about 40 years now and, witha condition formulated in terms of persistency of excitatio
a specific settingy it is a necessary condition for parametrid@he article [51], among others by the same author, deals with
convergence. It also seems closely related to the averagagimilar problem for a class afonlinearsystems which has
techniques used.gin [25], [26] and [27]. two particularly important features: the system is linear i

Among the many control-theory based approaches to syhe unknown variables (unmeasured states and parameters)
chronization we single out that based observertheory and, moreover, parametric uncertainty appears only in the
(Luenberger, high-gain, adaptive, reduced-ordar). An ob- set of dynamic equations of theeasuredvariables. Strictly
server is, roughly speaking, a dynamical system designedsfmeaking, the result is stated for such class of systemlulg h
estimatethe states of another. As it has been laid out ifor more general forms provided a coordinate transformatio
[35] master-slave synchronizati@nla Pecora—Carroll may be exists which brings a “general” nonlinear system into the
recasted in the context of observer design. This is sigmificadesired form. More on such coordinate transformations @n b
as observer theory is well-developed, mainly for lineatesys found for instance in [54], [55] to cite a few. Recent articten
—cf. [36], [37] but also with important advancements fomdaptive observers for systems, linear in the unmeasuaitasst
nonlinear systemsct. [38]. Within the vast observer theoryspecifically with the purpose of addressing synchroninatip
we shall emphasizadaptiveobserver design. In this case, itchaotic systems include [56], [8], [57], [58], [59], [12]14],
is required to design an observer under parametric unogytai [6], [7], [35]; in many of these references (at least in [98],
In the context of synchronization of chaotic systems th[&7], [58]) stringent conditions such as (global) Lipsehin
translates into the problem of designing a slave systemtwhithe nonlinearities are assumed to hold.
(as an observer) tracks (that is, estimates) the trajestori Other techniques forcontrolled synchronization rely on
of a master system by measuring a function or part ¢ifne-varying delay control. In particular, some results fo
the master’s state. This is in high contrast with many afystems of the Lur'e typecf e.g[60] that is, with sector
the previous references where it is assumed thab@trol nonlinearities (hence a similar class of systems covered by
action may be exerted by, possibly, measuring the whabdserver theory as previously discussed) include [61]].[62
state €f. e.g. [39], [40], [41], [42], [20]. Early work on The last three references have also appeared during tfeswevi
observer-based synchronization includes [43]; more fecqmocess of this paper.
work, including parametric uncertainty and adaptationthee
interesting papers [12], [44] of which we became aware after .
the original submission of this paper. In the first referende About this paper
the authors present similar results to ours but under somiewh In this article we present sufficient conditions for parancet
more restrictive assumptions: adaptive observers foiighgrt and state estimation using adaptive observers which cover
linear systems, affine in the unmeasured variables and,runldigh-gain designsef. [52], [35] and others from the references
persistency of excitation conditions, conclude synclration cited above: 1) we lay sufficient general conditions in terms
and parametric convergence with small errors. The secoofdpersistency of excitatiomlong trajectoriesfor nonlinear
reference is targeted to applications in the realm of securgystems (in contrast to [48], [49], [50]); 2) the class of non
communication based on synchronization of chaotic systeniisear systems includes systems that are linear in the wmkno

Generically, adaptive synchronization with full measurerariables but parametric uncertainty may appear anywhnere i
ment of the master system is an important and challengitige model (in contrast to [51]); 3) the conditions we set for o
problem in its own right. In this context it is worth mentiogi adaptive observers intersect (and generalize in certays)va
the interesting and efficierapen-loopidentification scheme with high-gain designs for nonlinear systems, similar tosth
of [45] but which is limited to systems having one unknowin [63], [64] however, in contrast to the former our method is
parameter per dynamic equation and with a specific structunet restricted to high-gain observers and, with respechéo t
Closed-loopidentification may be recasted in the context dftter, in this paper we cover the case of parametric urniogyta
so called adaptivdéracking control for chaotic systemsct without controls; 4) the class of systems that we consider
[46], [39], [47], [32]. Roughly observer-based synchratian, contains time-varying nonlinearities which may be regdrde
which is the subject of study in this paper, is comparable toas neglected dynamics; in contrast with works relying on
problem of tracking control with partiallunknownreference Lipschitz assumptions we allow for high order terms prodide
operating regime. that the trajectories of the master system are bounded whic

Literature on observer theory is very rich and we shall ngg not restrictive in the context of chaotic systems); 5) the
deal with a review; we only mention a few papers related twndition in terms of PE covers cases considered for instanc
the method we employ here. In that respect, let us recall tie[8], [58], [59], [56], [7], [57], [48], [49], [50], [12]. Qur
articles [48], [49], [50], [51] whose formulations are remiresults are for a (structurally) similar class of systemshas
niscent of the early works [52], [53]. The papers [48], [49]considered in [12] except that in the latter systems arenasdu

to be partially linear; another fundamental differencehiat tin

*By “specific setting” we refer to classes of systems havingtate [12] synchronization is considered as making two respectiv

structural properties related, for instance, to relatiegrde; so-called Model .
|, outputs which arepart of the state of the master and slave

Reference Adaptive Control systenes;. We shall not describe these in detai ) !
readers are kindly suggested to see [33], [34]. system converge to each other, as opposed to estimating the
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whole state of the system. The theoretical proofs that vizefinition 2 (Uniform global asymptotic stabilityJhe origin
present are original and rely on previous results for stsbil of (1) is said to be uniformly globally asymptotically stabl
of parameterized linear systemsf-{65]. (UGAS) if it is UGS and uniformly globally attractivee., for
In our main theorems we state and prove that under reach pair of strictly positive real numbefs o), there exists
laxed assumptions (in terms of persistency of excitatioth afi’ > 0 such that
structural conditions such as detectability and obselitgbi
the synchronization and parametric errors converge to easinp
sets, that is, the errors are bounded and relatively sniadl (t
is called practical asymptotic stability). Under morerggeént Definition 3 (Uniform Exponential StabilityYhe origin of
conditions, for instance, in the case that parameters aerkn the systemi = f(¢,z) is said to be uniformly exponentially
but not the states, synchronization may be achieved. Sigilastable on any ball if for any > 0 there exist two constanis
the adaptive observers may be employed into the specific praipd~ > 0 such that, for alt > ¢, > 0 and allz, € R™ such
lem of parameter identification if full measurement of mastehat ||z, || < r
states is available. This situation is similar to the contex
tracking control with full state-feedback as mentionediear

The rest of the paper is organized as follows. In the

following section we introduce some notation and definﬂ;iorPeﬁnitic_m. 4 (Unif. ngiglpbal Practica_l Asympt. St.abﬂity
SThe origin of (1) is said to be uniformly semi-globally

of stability that set the framework for our main results. _ . : L
These are presented in an increasing level of general ractically asymptotically stable (USPAS) if for each s
al numbersA > § > 0 ando > 0 there existl’ > 0 and

accompanied with case-studies. In Section Il we presest

simplest case, that is, when all parameters are known dhd Coc SUCh that|z (¢, to, zo)|| < k(f|zll) forall ¢ > to > 0
only partial measurements of the master system are avajlait"

in Section IV we study the case when the constant Iumpeq\xo” <A = |zt to,x0)]| <o+ VE>to+T .
parameters are unknown and we add an adaptation algorithm

to estimate them; in Section V we present the most generak,, pefinitions 1-2 see [66], for Definition 3 see [67]; for
result, for system’s _sy_nchron|zat|or_1_W|th parua_l megt_m_lfet, Definition 4 see [68].

parameter uncertainties and additional nonlinearitiesclivh
may correspond to neglected dynamics or undesirable attern . SYNCHRONIZATION AND OBSERVERS WITH
disturbances acting on the system. Along each of the pregedi PERSISTENGY OFEXCITATION

sections we present case-studies and simulation resuats th N ] o

illustrate our findings. All the proofs of stability are pesged A On observability and persistency of excitation

in an appendix at the end of the paper. We conclude with someConsider a nonlinear system of the form

remarks in Section VI. &= Ay)z 4)

lzoll <7 = |l&(t,to,2z0)]| <o Vt>to+T .

Hx(tvtmxo)” < k||IOH67'V(t*to) . (3)

1. PRELIMINARIES wherez € R" is the state vectory = Cxz, y € R™, is a
_, Awhere4 Measurable output. As explained in [35] synchronizaida

is a closed, not necessarily compact set, satisfies the bfs%:_ora and Carroll may t_)e recasted in the context of obse_rver
regularity assumption (BRA) if(t,-) is locally Lipschitz design. G_eneraIIyAspeaklng, an observer system for (4) is a
uniformly in ¢ and (-, ) is measurable. We denote the usualySt€m with stater such that|[z(t) — z(t)|| — 0 ast —

Euclidean norm of vectors by - || and use the same symbol?- I the context of master-slave synchronizatiormay be
for the matrix induced norm. A function : Ry — Ry thought of as the state variable of the slave system. Thues, on

is said to be of clas& (a € K), if it is continuous, strictly may solve the master-slave synchronization problem if @me ¢

increasing and equals to zero at zefoz K., if, in addition, d€Sign an observer for (4).
it is unbounded. A functiond : Rsq x Rsy — Rsg is of In the literature o_f nqnlmear observ_ersf.( [38]_, [35]
class KL if B(-t) € K, B(s,-) is strictly decreasing and @ Standard assumption is that the pal,A(y)) is ob-

lim_.. 8(s,) = 0. We denote the solution of a differentiaiS€"vable from the ‘outputy. To explain this condition
equationi = f(t, «) starting atz. at timeto by a(-, to, o ): let us first consider the case wheA is constant; we

furthermore, if the latter are defined for ali> ¢, we say that 32 thgt (TC’ A)2 'S c%bservabltillfTanT only if the matrix
the system is forward complete. [C A CT (A7) C - (A7) 7C ] s of full column
rank. We stress that, in the case thhtis not constant, for
instance, ifA is a function ofy, one must require this condition
to hold for eachy € R™. On occasions, one may ask the
= f(t,x) (1) following less restrictive property: Idt,, z. ) with z, = x(t,)
>}Je a pair of initial conditions that generate a trajectooiys
tion) of the equation (4) which we denote byt; ¢, x,). In
such case, the corresponding output trajectogyist,, x,) =
Cx(t;to, o) or, in short,y(t) = Cx(t). For this particular
|, to, 2o)|| < k(]|2o]|) V>t . (2) output trajectory, generated by thparticular pair of initial

Notation.We say that a functios : R>o x R"

Definition 1 (Uniform global stability)The origin of

wheref(-, ) satisfies the BRA, is said to be uniformly globall
stable (UGS) if there exists € K. such that, for each
(to, o) € R>o x R™, each solution(-, ¢, z,) Of (1) satisfies
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conditionst, and z(t,), the observability condition is thatthe case whem depends on system'’s trajectories appeared in
€T Ay®)TCT (Ay()*)TCT - (Aly()")TCTIT  [65].
has full column rankn for eacht > t,. Notice that  Our main results on adaptive observers and their applitatio
this is less restrictive than requiring tha®'™ A(y)'CT in the master-slave synchronization problem rely on refine-
(AHTCT --- (A(y)"~H)TCT]T is of full column rank for ments of the result above for the cases whemlepend on
all y € R™. This is clear if we consider that the set of pointshe measurable outputs amtl depends on the state. As we
y(t) for all t > ¢, is for aparticular pair of initial conditions, show, such formulations are adequate for a number of chaotic
only a subset oR™. Hence, requiring observability for ajle  systems however, since we considemnlinear systems one
R™ is tantamount to requiring that the system is observalieeds to start by posing properly the conditions of pensiste
for all trajectories generated lyy pair of initial conditions of excitation along trajectories. We use a condition in bieits
to >0, z, € R™, of [65].

Another useful concept from control theory, in the design
of observers and therefore, to solve the problem of synchrg_— On observers

nizationa la Pecora and Carroll idetectability. Roughly, we . ) ) ) o
require that the column rank of the matrix With the previous discussions in mind, we are now ready

to present a preliminary result on persistency-of-excitat

t+T . . . . R
T TAT WNT AT, . n—INTATTT based observer design for synchronization. A relativetypse
/t O Aly(s)) € (Aly(s)7) € (Aly(s)" =) C ] ds observer for systems of the form (4) is given by

be full for someT > 0 and for allt > 0. That is, it is no 3= A(y)d — L(t,y)C(& — x) 7
longer required that the rank condition holds feach¢ but
over a window of length". For instance the matrix whereL(-,-) is a design function chosen to satisfy the basic
. regularity assumption to ensure the well-posedness of the
R(t) = [Sm(t) 0 } differential equation. The matrix functioh : R>o x R™ —
0 cos(t) R™*™ must be chosen in a way that the origin of the

looses rank at € {0, %} for all integer values ofv however, estimation error dynamics
its integral over a windowt, t+7 /2] is of rank 2 for any value T=[AWyt) - Lit,y@®)Clz, T:=4-—=x (8)
of t.

rbe uniformly globally asymptotically stable.

Observers of the form (7) are reminiscent of Luenberger-
type observers and are at the basis of designsrfear time-
varying systems as for instance in [49], [50]. Note that here
the differential equation (8) is time-varying and depends o
the outputtrajectories y(t). In the context of master-slave
synchronization equation (8) represents the dynamics ef th
synchronization errors between that of the master’s stated
the slave’s staté. For example, a Lorenz oscillator, given by
the equations:

In the literature of control systems and identification e
exists a well known concept that is instrumental in understa
ing and stating conditions for detectability and obseritgbi
of dynamical systems. Such property is knowrpassistency
of excitationand its precise definition is as follows.

Definition 5 (persistency of excitatiod continuou$ func-
tion ¢ : R>o — R™*™ is called persistently exciting if there
exist two strictly positive numberg and T such that

t+T
/ d(s)p(s)Tds > pul ¥t>0. i1 = bhi(r2 — 1) (92)
t Ty = box1 —x9 — 2173 (9b)
For certain systems appearing in the context of adaptive i3 = 120 — 0313, (9c)

control and adaptive observers, this condition is knownedo b . _
sufficient and necessary for the stability of the origin. klormay be represented in the form (4) with

precisely, consider the following system: —0, o 0
= Az+B(t)"6 (5) yr=a1;  Aly)=|06 -1 -y (10)
6 = —B(t)Px (6) 0 v =6
. N hence, the observability matrix for this system, from otitpu

under the following conditions: y =1 iS

o the matrix A is Hurwitz i.e, its eigen-values have all

i . ) C 1 0 0
strictly negative real parts;
« the matrix P is symmetric positive definite. cAl = —0 01 0
CA2 91 (91 + 92) —91 (91 —+ 1) —Gly

Then, the origin of the system is uniformly asymptotically . _
stable; in particular||z(t)| — 0 ast — oo, if and only if B3 Which looses rank, for instance when = 0. Yet, it may
is persistently exciting. This result may be found in books d€ possible that the integral of this matrix alopg-ticular

adaptive control @. for instance [69]) and generalizations tdrajectoriesy(t) over a window of lengtil” be of rank 3 for
all ¢. In that case, the observer defined above, under an appro-

3Locally integrable is enough. priate condition of persistency of excitation may repraaluc
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the unmeasured states. More precisely we can establish ithgerifiable only on compact intervals of time as is natyrall

following. the case for any asymptotic property; moreover, since E4) i

- ) ] condition along trajectories it may only be verified numallc
Proposition 1 Consider System (8) and define := y(t) for 344 online. 0
eacht.

) ) ) Thus, Assumption 1 is little restrictive and allows to desig
Assumption 1Assume that there exists a globally uniformiyaficient observers such as the so-called high-gain observe
bognded positive definite matrix functiafl : R>o x R™ — ¢ [35], [52] and references therein. Below, we give explicit
RZG™ such thatpy, > || P|| and, defining formulae to computd, and P using a dynamic system. The

A(t,ys) == A(ys) — L(t,y:)C following equations are reminiscent of designs for lineaet
_ _ —— varying systems €f. [48], [50] and for nonlinear systems in
—Q(t,ye) == Alt,ye) "P(t, i) + P(t,ye) "A(t,ye) + P(t,y)  the so-called observable fornef-[51], [63]. The fundamental
(11) difference here is that conditions are clearly stated along
measured trajectories; note that they impose uniformityn wi
respect to initial conditions. Such uniformity is fundartedn
for properties such as robustness with respect to “smalidis
o banc_:e_s" €f. [67]. Hence, only by c_onsiderin_g_ the trajec_tor_ies
/ Q(r,y.)dr > ul >0, VE>0;  (12) explicitly one may lay the appropriate conditions for sli&pi
¢ and robustness.

we have the following for alt > ¢, > 0 and allz(t,) € R"

2) there exist, and7’ > 0 such that

3) there exists;y, > 0 such thatgy, > ||Q(¢, yr)]| -
Proposition 2 Let Assumption 2 hold. For any gives, > 0,

Under these conditions the origin = 0 of system (8) is we define the observer gain for each trajectdrt, v;), as

uniformly globally exponentially stable (that is, unifolym

exponentially stable for any initial statase R™ and initial L(t,y:) = P(t,y)'CT (15)
timesto = 0) D Py = 20TC - pP(ty) - Pt ) Aly)

The proof of Proposition 1 is provided in Appendix A. We —A(y)"P(t,y;), Yt>to+T,(16)
draw the following immediate corollary. Plt,y) = Po=P] >0 Ytel[to,to+Ts]. (17)

Corollary 1 Consider two Lorenz systems: one master Witlthen one has

statex and one slave system with statend assume that only

the first variable of the master system is measurable. Sgachr P(t,ys) > pge =1 forall t > to + T, (18)
nization is achieved under the conditions of Propositioim1.

particular, we havei(t) — z(t) ast — oo. and, on the other hand, the matxt, y¢) from (11) with P

and L given by (15) and (16), satisfi€3(t, y:) = p. P(t,y+)
Remark 1In general, verifying Assumption 1 is hard since i§0 Assumption 1 holds. O

must be done online; it is tantamount to verifying Assumptio

2 below. However, it should be clear that points 1) and 2) %pe pr((j)_ofBo.ftLhe first p;rt OT[ ]Ehhs progosdl'_uontls ﬁ)m}”?ed n
Assumption 1 holdf @ is positive definite for all values of PPENCIX B, the second part follows by direct caicuiation.

its arguments. Such assumption is common in related recent

literature -€f. [8], [58], [59], [56], [7], [57], [48], [49], [50] C. Example

among others. To prove further on the arguments behinde ywrap up this section with some simulation results for the
Assumption 1 we address the reader to [65]. U Lorenz system (9), using the observer from Proposition 2. In
the simulation set-up we assume that only the variablFom

the master is measurable and the observer (slave systerh) mus
reconstructry andzs. In the simulation we have sé@t, = 1s

Assumption 2Let ¢, (t,t,) denote the transition matrix asso
ciated toA(y), i.e, the solution of

forallt >0

Do (t,to) = Aly) P (t,to) and
(t:te) = Aly) @a(t, ) a3 L,
D, (to,to) =1.
. . P(ty)=11 8 3 (29)
Assume that there exist positive numb@jsand.,., such that, 2 3 9
A

4T, whose eigenvalues arg = 12.2006,
/ (7, 1) " CTCOL(1,t)dT > pipd . (14) 4.1477.
¢ The physical parameters, 0, andfs are chosen to make
Remark 2Note that condition (14) means that the outpuhe Lorenz system describe a chaotic behauir 6, = 16,
trajectory y(t) is PE which is likely to hold if the system 6, = 45.6 andfs; = 4. The initial states of the master system
operates under a chaotic regim&et we emphasize that PEare set to one while those of the slave system (observer) are

Ipsh ' : - set to zero.
While this seems a reasonable conjecture, verified for a eunab | . fR Kk 2 d the f hat h d
particular cases in simulations, we are not aware of a rigorathematical n view ot Remar and the tacts that heye= z; an

proof. the Lorenz system operates in chaotic mode, it is expectable

2 = 5.6517 and A3 =

Authorized licensed use limited to: Jesus Leyva-Ramos. Downloaded on April 27, 2009 at 18:41 from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS CIRCUITS AND SYSTEMS—I: REGULAR PAPERS UBMITTED: SEPTEMBER 2007/JUNE 2008 6

where A is constant or satisfies some structural conditions
tar ) ' : :?52*_%(2)'{ of relative degree, minimum phaseness. §34], etc. This
s o=l class covers systems with similar structure but whérand
¥ depend on time only and not on the state; that is, the
case of linear time-varying systems. Thus, while restrcti
from a strict systems’ viewpoint the model (20) covers many
chaotic oscillators studied in focussed articles such as on
the Lorenz system —see the references cited in the Intrimthuct

synchronization errors

We now make the following hypothesis dn

Assumption 3Let x;(¢) and 2 (t) be two solutions satisfying

(o] 0.5 1 1.5

time (20) for certain initial conditions. We assume that the fiorc
¥ along the trajectories:; (t) and zo(t) satisfies, for any
Fig. 1. Absolute value of synchronization errors for Loresystem:z; — Vvectors¢ € R™ with ||¢|| = 1 and a positive constant
states of master system arigl — states of slave system. ar > 0, [[U(x1(t) — V(z2(t)C]] < Yumllzi(t) — xa(t)]]
for all t > ¢, > 0. We also assume that there exigig > 0
that the system satisfies the excitation condition imposed EUCh that
Y pose max_ [[CTUO)C] < vo. (21)

Assumption 2. Il =1

In Figure 1 we show the plots of the norms of the synchro-
nization errors. One may appreciate the exponential detaylde first part of the previous assumption may be satisfied, in
the errors to zero. We stress that this is done with the obserparticular, in the following cases which make sense for thao

from Proposition 2 with measurement of only but with Systems:

known parameterg,, 6> andfs. « the matrix function¥(-) is once continuously differen-
tiable and the trajectories(t) are bounded for alt;
IV. ADAPTIVE OBSERVERSWITH PERSISTENCY OF » the function ¥(-) is globally Lipschitz: ||[¥(z1) —
EXCITATION U (22)|C|| < Yar|lwr — a2l for all 21, 2o € R™.

In the previous section we assumed that thewstant The second sufficient condition for Assumption 3, that is,
parameters of system (4) are known. In practice this is gtpbally Lipschitz, is restrictive in the context of genkera
unrealistic assumption; for instance, in the case of a ahaononlinear systems. The second alternative assumptien,
oscillator such as the Lorenz system which may be realizedkaundedness on(t) is not restrictive in the present context
an electrical circuit ef. [9], it is clear that one typically will of synchronization if we recall that(t) corresponds to the
dispose ofapproximatevalues of the parametets, #, and solutions of an ordinary differential equatian=f(t,x, )

63 which depend on the values of the physical componentssifch that for a particular choice ¢f the system exhibits a
the circuit. In such a case, it is desirable to design an ebserchaotic behavior and therefore(t) is bounded. Boundedness
with an adaptation law that updates the estimaigs), 6,(t) of @(t) follows directly from the regularity hypotheses im-

and ég(t). posed onf to guarantee existence and uniqueness of solutions.
Hence, in a more general context we assume next that fBg the other hand, that the condition in the first bullet atisve
system (4) may be written as sufficient for Assumption 3 to hold, follows by invoking the

) Mean Value theorem for multi-variable functiongf—[70].
&= Aly)r +¥(x)d (20)  Thys, Assumption 3 is not restrictive in the present conbéxt

where the matrix4 depends only on the outpyte R™ (as Mmaster-slave synchronization.

opposed to the matrix in (10) where the system parameterdJnder these conditions, an adaptive observer for systems of
are involved since they are considered to be known) affte form (20) is given by

the matrix ¥ depends only on the state but not on the B N N A

unknown parameters. We assume that © is a vector of T =Aly)z - L(t,y)C (@ — ) + ¥(2)0 (22)
unknown constant parameters atdis a compact ofR™, where L(.,-) satisfies the basic regularity assumption and
that is, we separate the terms that depend on the unknawa persistency of excitation condition implicitly definé
parameters from those terms that do not and we assume R&umption 1. Using (20), and defining= & —z, 6 := 0—0

the dependence of the system’s dynamics on the unknowié estimation error dynamics is given by

parameterd is linear.

The model (20) covers or intersects with other interesting T = [A(y) - L(t,y)Clz + ¥ (z + 2(1)0
classes of systems studied in the literature of adaptive +®(t,z,z(t),0) (23a)
observers design. For instance, in [51] the systems that a(f(t Z,2(t),0) = [U(F+a(t) - U(xt)]0. (23b)

considered (after a coordinate transformation) are suah th
0 appears only in dynamic equations ofeasured states. Assumption 3 and the assumption thtate © where © is
In [12] the class of systems considered restricts to the caseompact of appropriate dimension imply that there exists
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6 > 0 such that The observability matrix for this system becomes
[@(t,z(t), z(t),0)|| < YmOumlz@)] = omllZ()]. (24) C 100
CA|l =10 0 O

Next, consider the adaptation law A2 00 0
X . . T .
0(t) = —y¥(2(t)) P(t,y)2(t), ~>0 (25)  \which is always of rank 1. In other words, it is impossible
which, considering thaf = 0, is equivalent to to design a state and parameter estimator of the type (22)
- - - - - . by measuring onlyz; and having no knowledge of the
0=—yU(z+ax(t) Pt y)z —y¥(T+2() Pl y)z(t) parametefs
(26)

with v > 0. We also impose a persistency-of-excitatio
condition on the function (z(t)):

50

IS
o
T

T T T T T T
T
—master| f 4
slave

w
o
T

Assumption 4The function ¥ (z(¢)) is such that there exist
positive numberg., and7’, such that, for any unitary vector
¢ e R™,

N
o
T

[y
o
T

o
T

!
[
o

T

t+T,
/t |W(e()Cldr > py.  VEz0.  (27)

|
N
o
T

Slave initial condition: 10

Assumption 4 is a structural condition on the functibft) as
well as on therichnessof the trajectories:(t). =
Under these conditions we have the following. % 20  -10 0 10 20 30 40

master and slave coordinate x; and

master and slave coordinate x9 and I

|
w
(=]
T

Proposition 3 The origin of the estimation error dynamics
corresponding toz and 0, ie. equations (23) and (26), Fig. 2. Lorenz slave and master systems: phase portrait efs x> (master,
is uniformly semi-globally practically asymptoticallyagtle —Ccontinuous line) and:y vs & (slave —dotted line)

provided that Assumptions 1, 3 and 4 are satisfied and the
solutionsz(t) and their derivativeg(¢) are bounded for all.

O 90

Roughly, Proposition 3 establishes conditions for thees
and parameter estimation errors to converge to a s
neighborhood of the origin. In the context of master-sl
synchronization of chaotic systems, Proposition 3 eshb§
conditions under which two chaotic systems with unknc
constant parameters, synchronize, in the event that onl
output of the master system is measurable.

~
o
T

w B al o)}
o o o o
T T T T

master and slave coordinates x3 and 3
N
o
T

Initial condition for slave : 10 |

[
o

A. Example: synchronization of two Lorenz oscillators

. . . 7Ini ial condition for master : 1 i
Let us consider the synchronization problem for two Lor g t . e ‘ ‘ ‘
-30 -20 -10 (o] 10 20 30 40
systems €f. Eq. (9). We assume to measuge = z; and master and slave coordinates z1 and 1
thatds is unknown. Under such conditions the system can be
rewritten in the form (20) withy = x4, Fig. 3. Lorenz slave and master systems: phase portraif ofs =3 (master,
continuous line) and:; vs 3 (slave- - - dotted line)
—01 0 0 0 0 0
Ay):= |02 -1 -y, ¥(z):=|0 0 0 . We tested the proposed algorithm in simulation under the
0 m 0 00 -z (28) following conditions. For a chaotic behavior we set the pa-

The functi b tisfy the basi larit ditiand rameters of the master systemdp = 16, 6, = 45.6 and
€ functions above salisly the basic regularity conasiand »._ 4 the master initial states are set 00) = [1;1;1];

\IJ@globtaII%/hLlpsanz. hoi ¢ bl tout lead the slave initial states are set 1d0) = [10;10;10] and the

el'not?I a nﬁ any (i 0|ce| ° _tn’;]easgra ihou(?ut' _eabsiH?tial estimate of the master’'s paramefigrto 05(0) = 2. The
a reajizable synchronization aigorithm since the de elm;a observer parameters are setdp = 1000, 7, = 0.01s and
assumption may not be verified. For instance, if omlyis

d and all ; K h P, = I. The adaptation gain is set to= 2.
measured and afl paramelers are unknown we have The simulation results are presented in Figures 2—6. The

0 0 0 ro—x1 O 0 phase portraits of the master and slave systems are depicted
Aly) =0 =1 —wp|, Y(z):= 0 1 0 | .in Figures 2—4; one can appreciate the good match between
0 Y1 0 0 0 —xIs3
(2 5We are not aware of any result for such case by any other meitioer.
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10

master and slave coordinate x9 and Iy

Initial condition \></Initial condition for

for master: 1 \JT slaye system : 10
-20 -10 0 10 20 30 40

master and slave coordinate x3 and Z3

50

Fig. 4. Lorenz slave and master systems: phase portrait @fs 3 (master,
continuous line) ands vs &3 (slave- - - dotted line)

16

synch error )?1
14 _ _ synch error iz 7
14 S —synch error X
12 . 1
® 12 S
g 10 10 , 0.01 |
553 L —1 O i e gt et s st e
g 8‘+ 8 \ -0.01 i
= 6 b ~0.02 / \ V\/
; 6 2 . -0.03 4
S . -0.04
= 2
= all v -0.05 4
=l S
I O o0z o004 006 7 8 N 10 u
2 : . i
_20 5 10 15 20 25 30 35 40
time
Fig. 5. Lorenz slave and master systems: synchronizatiamseior the three

variablesi.e.,, 1, 72 andz3

B L L LT ST P
| reference /T 1

& value for 93
=
£ 3.5 ]
g
<
=
<
[=%
B 3r 1
2
<
£
‘2 2.5 1
v

ob ]

0 0.005 0.01 0.015 0.02 0.025
time

Fig. 6. Lorenz slave and master systems: Estimate of paearfigt Value

for master systends = 4; estimated valués = 4.1661.

master and slave trajectories. In Figure 5 we present
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stability in the case of parametric uncertainty. Indeedjceo
that, in the ideal case that= 0 after a time say*, we have
from (25) 0 = —yVU(z(t)) " P(t,y:)z(t) wherez(t) ‘has a
chaotic behaviour’. On the other hand, note that the ‘stable
term —p,. P in (16) drives the solution of the latter to zero (in
the absence of the other terms) hence, it may be inferred that
the matrix P becomes considerably small. Moreover, since
x(t) is chaotic it is also bounded $o~ 0 even thougl¥ does
not necessarily tends to zero asymptotically. As estaddidiy
the proposition one can only guarantee practical asyntptoti
stability.

V. ROBUSTADAPTIVE SYNCHRONIZATION VIA PE
OBSERVERS

We consider now, systems with additional nonlinearities
B(t,z) that depend only on the state, time akdown
parametersi.e., systems of the form

= A(y)r + U (x)0 + B(t, ) (30)

where B satisfies the same assumptionsligsuniformly in ¢:

Assumption 5Let » > 0 be arbitrarily fixed and let(¢) and
¢'(t) be two solutions satisfying (30) for respective initial
conditions&, and ¢/ such thatmax{||& ||, [|1€5)] < r. We
assume that there exisbg; such that the functior3, along
the trajectorieg(t) and&’(t) satisfies

I B(t,£(t) — B(t,&' () | < barllg(t) — €' (1)

for all ¢t > t, >

max{|& |, €1} < 7.

This condition onB holds under similar conditions as fdr
—cf. Assumption 3. We stress thd@(¢,-) needs not to be
globally Lipschitz. In this respect it is convenient to sse
that the trajectories of chaotic systems are bounded.

For the system (30) the observer equation becomes

i=A@)i— L(t,y)C(z —z) + U(2)0 + B(t,&) (32)

(31)

0 and all initial states such that

and the estimation (synchronization) error dynamics is
T =[A(y)—L(t,y)Clz+¥(Z+z(1))0+(t, 7, 2(t),0) (33)
where

D(t,z,x(t),0)

[V (z 4+ 2(t)) — W (z(t)) 10
+B(t, T+ z(t)) — B(t, x(t)).

Assumptions 3 and 5 together with the hypothesis ¢thato
where © is a compact of appropriate dimension imply that
there existd),; > 0 such that

@2, 2(t), z(t), 0)|| < waOum || Z(@)]] +barl|Z(E)]] =: o l|Z(2)]]
(34)

which, considering (24), redefinég,. This makes it apparent

tthet there is no loss of generality in considering tiatloes

graphs of the three synchronization errors against time Thot contain any unknown parameters since those terms may be
estimated value of the paramet®y is depicted in Figure 6 embedded inl(z). As a matter of fact, a direct corollary from
where it is appreciated a small mismatch between the trBeoposition 3 follows for systems (30); that is, the adagptiv
(fs = 4) and estimated valugl{ = 4.16). This small error observer from previous section still ensures the propefty o

is expectable: Proposition 3 establish@actical asymptotic

semi-global practical asymptotic stability.
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Corollary 2 The origin of the estimation error dynamics cor
sponding tar andé, i.e. Equations (33) and (26), is uniform

IN
(@]

—slave

&
semi-globally practically asymptotically stable prowidéhat = 3°f ~~ masterjy
Assumptions 1, 3, 4 and 5 are satisfied and the solutigtls < 2o |
and their derivatives:(t) are bounded for alt. O % 101!

"5 \

In the context of synchronization this is tantamount g o

ensuring master-slave synchronization with a small efirois 2 1ol .
is stated in the following proposition which contains ale = !
previous results. 5 -20r

‘:é -30+

£

Proposition 4 Consider a chaoticnastersystem of the forn
(30) whered is such that the solutions(t) exhibit a chaotic 1% —20 0 20 40
behavior. Lety = Cz be a measurable output of the mas... master and slave coordinates x1 and &
system. Construct a slave SySter.n. accordmg to the dyna %S 7. Luet al chaotic oscillator: phase portraits of the master system —
(32), (25). Then, under the conditions of Corollary 2 a slavg;, and for the slave system s+ vs &2

system synchronizes with the master; in particufdt,) ap-

proachess(t) ast — oo. Moreover:

1) in the case that the parametéisare unknown, the ‘
errors ||z(t) — #(t)| and |0 — 0| approach a sma 57 \ e | |
neighborhood of the origin as — oo. Moreover, the _
size of this neighborhood may be reduced by increa
the persistency of excitationg. ., andy;

2) in the case that the parametérare unknown butC' =
1, i.e. the whole master system’s state is measurz
perfect synchronization occurs and the parametengay
be estimated if the persistency of excitation condit

10

master and slave variables x3 and 3

(27) holds; a0l _ ,
3) in the case that the parametérare known, the slav D Ry
system will achieve perfect synchronization provic B 20  -10 0 10 20 30 40

master and slave variables x; and 2

that the persistency of excitation condition imposec ...
Assumption 1 holds. Fig. 8. Luet al chaotic oscillator: phase portraits of the master system —
0 ws z3 and for the slave system &+ vs i3

The statement in point 1) generalizes previous results w*~

rely either on a Lipschitz condition on the additional nanl —
earities B or, on positivity of the matrixQ) in Assumption il j
1 or both €f. Remark 1 and references mentioned there; il
statement in point 2) is reminiscent ebntrolled synchro- % T
nization under parameter uncertainty when the whole « 32 ::
is measurablecf. e.g. [71], [72], [32] and references in tr ; al |
latter; the statement in point 3) generalizes results o mies- ! , |
based synchronization, as briefly treated in Sectiondfle.g. £ | ” i
[35], [7], etc. 2 ol e 1
7k _1721: i
A. Example: The chaotic oscillator ofuLet al —cf. [73] -8 ] ‘ 0.02.05.018. 1. 42 A8 4T B ]
0 10 20 30 40 50
We consider as example the chaotic oscillator from [7% time

1 = G121 — 2203+ 04 (35a)

. Fig. 9. L et al chaotic oscillator: synchronization errae., difference

Ty = baxo+z123 (35b) between master’s variable; and slave’s variable:

T3 = BO3x34+ 1120 (35C)
where 6, = — %205 |n the simulation set-up we useview of the boundedness af;(t) under a chaotic regime:

the high-gain ad?;\pti\fe observer (32), (15) with measurahfeleed, for anyr and any initial states satisfyinf.| < r
master’s states:; and z3. We also assume thal; and 6, there existsk such that|z(t)|| < R forall ¢t > ¢, > 0. Hence,
are unknown. We consider the termx, as a “neglected” condition (31) holds withhy; = 2R. To see this we observe
dynamicsi.e, we defineB(t,z) := [0 0 x122]". This term that || B(¢,£(t)) — B(t,£'(1))]| = |€1(1)&(t) — & ()EL(1)] <
satisfies the Lipschitz hypothesis @h along trajectoriesin  |&1(¢)]|&2(8) —&5(8)|+|E5(8) |61 () — &L (8)] < 2R|[E(t)—E ()]
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measurable output ig = [z2 23] so we writey = Cz with

< -2

g 2y 1 C = diag011]. The figure shows the evolution of the three
§ 2 1 eigenvalues of the matrix.(¢,y;) := P~!(¢,4,)CT against

5 29 i time. While the gains’ magnitudes may be a drawback of
R vabe o puaster parameter &1 1 high-gain observers for implementation purposes, it istivtr
R e S ;;1""""’;,’_;;"‘\"”‘5’2 """""" s o emphasize again that this observer is only one case for which

time Assumption 1 holds. We recall at this point that, roughly, it
: : : : is needed an observer guaranteeing asymptotic stabilitiyeof
systemz = [A(y) — L(t,y)C]z, along the trajectorieg(t);

Ar ' ‘ 7 a sufficientbut not necessary condition for this is the more

|
oo}

parameter 6
|
I o
® o
kG
i
|

£-8.146[ - ] restrictive hypothesis (used in a number of referencefs —
£ sz \ \ \ \ \ \ \ Remark 1) that the matriX) in the assumption is positive
o 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 .. . . . e e o

time definite along trajectories, uniformly for all initial coitidns.
Fig. 10. Luet al chaotic oscillator: estimates of parametéisand 6. VI. CONCLUSIONS

We presented an adaptive observer scheme for systems’

1,430} oos[ [ . ‘ - - . chaotic synchronization. Our approach applies to a class of
1,300} mmMMWMWWWMW 1 systems with dynamics that contains, essentially, threaste
11700 sl f : ‘ ‘ ‘ o the first is assumed to depend linearly in the unmeasured
T e YUY . UUTUIL IO, D0 variables and have no parameter uncertainty, the second is
E 910r 1500 1 assumed to depembnlinearlyin the unmeasured states and
;§ 7801 w (D) ' 1 linearly in the uncertairconstantparameters, a third term is
g o0 10| | (D) 7 considered to depend both on time and (un)measured states
© 5207 o0 P - : 19671 without parametric uncertainty. Considering all threemsr
390¢ 610 Ml 1 together, the class of systems is fairly wide, covering many
j:g o o5 1 15 ; classical examples of chaotic oscillators. Our conditiars
o @ stated in terms of persistency of excitation which is a mild
0o 15 35 55 75 95 115 135 150 condition for convergence in the context tifne-varying

time

systems and covers many other results on observer-based
synchronization previously published. For illustratiorg have
Fig. 11.  Lu et al chaotic oscillator: three eigenvalues: (L(t,u:)). addressed two examples of master-slave synchronization, i
Ao (L(t, , As(L(t, of the observer gaird. (¢, on different scales . . ; ’
2(L{t:92)). Aa(Llt ve) gaIL (%, 1) particular, for the Lorenz and for the LU oscillators.
We believe that connections with some of the mentioned

However, it is clear that3(,z) does not satisfy sector or WOrkS Onswithching-topology network may be established

Lipschitz conditions ¢f. e.g.[8], [58], [59], [56], [7] since it N terms of persistency of excitation which is clearly linke
is a bilinear function of the states. to the notion ofaverage. Indeed, PE has been used formally

According to [20] this oscillator presents chaotic behavid® €Stablish stability among a networks of systems with time

for parameter value, = —10, 65 = —4 and|6,| < 19.2 and varying (PE) interconnections in [74]. Future researchrisea
initial statesz(0) = [3; —4:2]T; we setds = 0; with these N this direction.
values#; = —2.2587. The observer design parameters are set Acknowledgments

toy = 0.025 andp, = 1000 and7;, = 0.1. The slave system's  The authors are grateful to the anonymous reviewers for

initial states are set t@(0) = 10, #(0) = 10, #3(0) = 10.  their many constructive remarks and for pointing out severa

The matrix P is initialized atP, = I. relevant references on synchronization in the context of ne
The simulation results are shown in Figures 7-11. Figuresybrks of oscillators.

and 8 show the phase portraits of the slave system’s vasiable

I9 and 23 relative to the estimated stat®; on the same

figures we present for comparison, the corresponding phase

portraits for the master system. For a better appreciatien t [1] 1. 1. Blekhman, Synchronization in science and technologyew York:
ASME Press, 1988.

small SynChromzatlon error, — x; against time, 1S dep"}ted [2] L. M. Pecora and T. L. Carroll, “Synchronization in chaosystems,”

in Figure 9. Figure 10 shows the estimated paramefers Phys. Rev. Avol. 64, pp. 821-824, 1990.

and ég; indeed, even thouglﬁl is a function off, and 85 [3] G Chen and X_. D(_)ngFr(_)m Chaos to Order:_ Me_thodologies, Perspec-
. . A - . tives, and ApplicationsSingapore: World Scientic, 1998.

which is known,6, and ¢, are CompUted accordlng to the [4] A. L. Fradkov, H. Nijmeijer, and A. Markov, “Adaptive oksver-based

adaptation law (25) as independent parameters. In thisefigur  synchronisation for communicationsiit. J. of Bifurcat. and Chags

we show the small estimation error féy relative tod; albeit vol. 10, no. 12, pp. 2807-2814, 2000.
a more important mismatch betweénandd,. Finally, some . )
Many references have been left out due to space constrétietseader is

p|0t§ representative of the .eVOI.Ution of the Obs?rver gain invited to see other work on this topic, particularly by theépendent authors
against time, are presented in Figure 11: in the simulatlom, Belykh, Bollt and di Bernardo.
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A. Proof of Proposition 1
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the solutions oft = A(y;)z satisfy
|Z(t +T)|)* < i—Mnf(ﬂn?, Vreltt+T], t>0.
m

: (38)
It follows from this, the equation Vi(r,z(1)) =
—z(7) T Q(r,y,)z(r) and (36) that

Vit,z(t)) = Vit +T,z(t+ 1))

t+T
> /t j(T)TQ(T, Y- )Z(T)dr

t+T
> / Iz | it €T Q(ryE | dr
¢ l€ =1
T2>0
t-l—Tp
> / Pl it €TQ(ryn)€ | dr it + T2
¢ Pm 1]l =
>0
HPm
> BPm 4 )2

Pm
which, integrating on both sides frotg to oo, implies that

to+T
/to bm

to+T
|z(t)]1%dt + / Vit 5(0))dt

to

OOpm _
> / Pl (1) |2t (39)
to PM
hence
m 2 m — i _
(7 4 222 ) e = [ atolar (o)
PmMm 1% to

It follows from [65, Lemma 3] that the origin of = A(y;)Z
is globally exponentially stable, uniformly ig;. Moreover,

defining
c:—\/max{<Tp—m+2pﬂ), }
Pm K

we have 1
(t—to)

|2(t)]] < 2¢e'/?|1zo]le 2¢

Pm

(41)
PMm

(42)

B. Proof of Proposition 2: Positiveness &, y:)
In the sequel we drop the arguments: we write for

Consider Assumption 1. It is a standard result in adaptiVé(t; y:), A for A(t,y;) and @, for @, (¢, ).

control literature €f. [33] that (12) is equivalent to

t+T
[ €amgr = vizo @)
t

for any unitary vecto € R™. That is, ¢(t) := £"Q(t, ;)&
is PE and satisfiesy, > ||¢(¢)| for all ¢ > 0. Consider
now the functionV; (¢, z) := & P(t,y,)7; its total derivative
along the solutions oft = A(y,)z yields, by assumption,

Vi = -2 Q(t,y:)T < 0. This implies that, defining,, and
pm as
P = ||§i|]\ﬂf 1§TP(t,yt)§ pu = sup £'P(ty)E,
= =1
t>0 Hfllz 0

(37)

Multiplying by e?=* on both sides of Equation (16) we
obtain
% (eP'P) = —er*'(ATP+ PA-2CTC). (43)

Let &, denote the transition matrix defined in Assumption 2.
Then, left and right-multiplying on both sides of (43) ﬁg&r
and ¢, respectively, we obtain
® el PO, = —eP'®(ATP+PA-20"TC)D, .
Next, we recall from (13) that
dIATP=3]P
hence

PA®, = Pd, (44)
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therefore
BT ertPp, = —epst [cbj PO, +®] Pd, — 2@10%@4 .
On the other hand,
d
— (eP'®] P, =
dt (e, P2,
epet [@;(P +pP), + ] PD, + @;bem} .
Using (16) and (44) in the latter, we obtain
d
— (er'®,) PD,) = 2”0 CTCD, .
dt xT xT

Integrating the previous expression from to ¢ + 7, and
recalling thatP, = P(t.,y:,) > 0, we get

ePr TS (4 Ty to) Pt + Tp) Py (t + T, to)

4T,
> / 2eP=T D, (1,t,) ' C (1) O(T) Py (T, to)dr .
to

Multiplying on both sides by—7=(*+T=) and, on the left by

®,(to,t+T,)" and on the right byb, (t,,t+T,), we obtain

t+Ty
P(t+T17yt+Tz) Z / 2epI(T7t7TI)(I)I(t07t+TI)TX
to

D, (7, to)TC(T)TC(T)(I)I(T, to) Py (to, t + Ty )dT .
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where® is defined by (23b). Let, be such thaljz(t)|| < 5,
for all ¢ > 0 then, from (24) and (21), it follows that

Kt 2)| < (WmpmBe + o)zl + partbo B2 (47a)

Consider now the following claim to be true (the proof is
provided farther below).

Claim 1 Under the conditions of Proposition 1 the origin of
Z = F(t,z)z is UGAS and uniformly exponentially stable on
any ball.

From the proof of Claim 1 €f. Section C.1 we have, for

anyr > 0 andt, > 0,

o)l <7 = J=z(0)] < Kll=(to)[e77*) (48)

wherek := 2ce'/?, ~ := LQ andc > 0 is defined below (55).
It follows, from the proo? of [66, Theorem 4.14], that there
existsVy : R>g x Br — R>¢ with R := kr, such that

1 _ 672qMT 1 _ 672'yT
<7) 1217 < Vatt,2) < (—) )12

2qm 2y
o (1,20 < ~(1 T
H%H <2 [1 _ ef(wqu)T} .
0z Y= 4am

Reducing the size of the window of integration and using tf@valuating the time derivative df;(t, =) along the trajectories

transitivity of ®,,, we obtain

t+T.

P(t + Ty, yirr,) > / 2ePeTTIG (7 1+ T,) T x

t
C(T)TC(T)(I)QC(T, t+T,)dr.

Hence, since

=

T>t T—t—T,>-T,,

we get

t+Ty
Pt + Ty, yiir,) > e P=t= / 20, (1,t +Ty) C(1)" x
t
C(r)®,(1,t + T)dr,
and consequently, from (14),

P(t,y) > poe P ToT, YVt > to + T . (45)

C. Proof of Proposition 3

The dynamics of the estimation errots:= colz, 0] is
now given by

2=F(t,z)z+ K(t, z) (46a)
t

_[ 1Am)-Ltwc] -y +a)
F(tvz)'_[ —W\I/(g+ x(t))TgD(t,yt) ! 0 ]
(46b)
B O(t,z,2(t),0)
K(t,z):= { —U(z + 2() " P(t, ye)x(t) ] e

of (46a) and using (47) we obtain
Valt,z2) < —(1—e2T)lz)?
[1 = e OmmOT] (|22 + ba) )

Y 4qMm
hence if, for any giverk > 0, b, b andz satisfy
(L-—e?"—¢)(v—qm)
- 41— e O-am)T]
4 [1 — e*('yqu)T}
(I—e>T—¢)(y—aqu)

by (49)

Y

b2

(B (50)
we obtain
Va(t, 2) < —el2)1?.

It follows that the solutions are uniformly ultimately baded
—cf. [66, p. 172] for all initial conditions such thdt,| < r.
On the other hand, the term on the right hand side of (50)
may be reduced at will by enlarging (i.e., by enlargingc
hence,; and p) while the calculations above hold for
arbitrarily large but finite; hence, it follows that the drig
is semi-globally uniformly practically asymptoticallyadtle.

1) Proof of Claim 1: The proof relies on the result from
Proposition 1 and the following

Claim 2 There exists:,; < co such that the function — 24
generated by the differential equatiohs= F'(t¢, z)z where '
is defined in (46b), satisfies

/|\zl(t)||dts@1nzo|| Yt t,>0  (51)
to
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and moreover, the origin af = F(¢, z)z is UGS withx(s) := Under Assumption 4 we have
c.0s — cf. Ineq. (2), and )
= [ Nzl < e
t

1 . 1
o0 = \/max {pM : ;} /mln {pm : ;} . (52) hence, in view of the boundedness(f) and the Lipschitz
property of U we haveVj is positive definite for sufficiently
small e; moreover, there exist positive numbers, oo such
that

2|2

Claim 3 There exists:.o < co such that the functio — 2o
generated by the differential equatiohs= F'(¢, z)z where ' 2 2
. . . L t,z) < .
is defined in (46b), satisfies onflzl” < Va(t, 2) < asll2l
o On the other hand, the time derivative &% along the
/ | z2(t)||dt < caol|2o|| Vi>t, > 0. (53) trajectories oft = F(t, z)z yields
to

2
' ' 1y Py 2
From Claims 2 and 3 above it follows that Va(t,z) < Valt, 2) —ee ”T—wHZzH

[ leldt< el vezezo (s - e (T2 — 1¥(a(t) P21
e —e[(A - LC)z
wherec, := max{c.,1, c.2}. It follows from [65, Lemma
L . . . + (W +x(t)) — V(x(t W(x(t .
3] that the origin is uniformly exponentially attractive amy (¥(z +2(1)) (@) )22 ]2 (a( ))(é%)
ball, that is, it is uniformly globally attractive and, maneer, . )
for anyr > 0 we have Under the regularity assumptions made «ft), ¥ etc, and
considering that|z(¢)|| < R, it follows that there exists a
Lo 1 (t—to) numbercgr such that
Izt <r = 2] < 2¢e'?||z(t)||e 22 .
| 09 (t(0) < - ‘” ()]
with ¢ := max{c., ¢.0}. We conclude that the origin of the
system is UGAS and uniformly exponentially stable on any +€CR llz1(t) || z2(t) + [|22(t)]] ]
ball
_ M
Notice that asc decreases, the rate of convergence= < - ( 2 w ) 22 ()] + CR + Dz
—L increases.

2‘5 Proof of Claim 2: The proof follows naturally from the which, definingcy := (ae*Tw ’Tw — E) is equivalent to
proof of Proposition 1. Consider the positive definite fioict vo2

o0

collz2(t)||dt <Vi(to, 2(to 59
Vo) = Plya s sl e CIHOTEER) (59)

2 2 > 2
its total derivative along the solutions 6f= F(t, z)z yields (e + e, /t lz1 (@)%t (60)
Va(t,z) = Vi(t,z) < 0 which implies thatp,,||z(t)|* + The result follows with

A/ < Nz@)N1° < parllz(to)* + (/N0 It
c22(Ty, pry) \/

follows that the system is UGS, in particular, it satisfies az + (ck + 1)c2

Co
[z < czollz(to)l VE=1to 20 .
Notice thatc,o(Ty, py, 1) — 0 @Sy — 0o and py, — oo.
with ¢,o as defined in (52). The first part of the claim

follows observing that (40) still holds for the trajectarief D. Proof of Proposition 4

z = F(t,z)z hence, (51) holds with The proof follows from the developments of the previous
5 section. In the first case, the synchronization error dynarisi
e, T) = TPM + P given exactly by (23) and (26) whose origin has been showed
Pm K to be uniformly semi-globally practically asymptoticakya-
Notice that for each fixed", ¢(u, T) — 0 asp — oc. ble. In the second case, the synchronization error dynamics
3) Proof of Claim 3: Let » > 0 be an arbitrary number corresponds to equations (23) and, instead of (26),
and defineR := c,or. Consider the system = F(¢, z)z with 0 — (T + w(t))TP(t’ y)Z 4> 0.

initial conditions satisfyind|z,|| < r; then, we have|z(t)|| < ) ) . )
Rforallt > t,. Consider the functiol; : R-ox Br — Rso [N this caseps in (47b) is zero and therefore, the calculations

defined as involved in the proof of Proposition 3 hold for allz|| >
0. In the case of the high-gain observer, notice that the
Vi(t, z) =Va(t, 2) synchronization may be achieved from any initial errors. In

> - 9 T the third case, the synchronization dynamics is given simpl
- € </t € W ((7)) 22| "dT + 2, ‘I’(x(t))'z?) - by equation (23) withd = 0 and the result follows from the
(57) proof of Proposition 1 for sufficiently large.
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