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In this work we present a pseudo-random bit generator based on two lag time series
of the logistic map using positive and negative values in the bifurcation parameter. In
order to hidden the map used to build the pseudo-random series we have used a delay
in the generation of time series. These new series when they are mapped xn against
xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random
sequences have been tested with the suite of NIST giving satisfactory results for use in
stream ciphers.
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1. Introduction

The development in the field of communication systems has grown tremendously

due to modern needs to e-commerce, e-mail, online banking, etcetera; in addition

to the increased use of mobile devices. Usually, the information in this type of com-

munication systems is broadcasted on public channels, so there is a need for privacy

of information transmitted. Cryptography is focused on solving problems such as

confidentiality, integrity and authentication 1. The confidentiality is accomplished

by an algorithm that takes a plaintext and it is converted to a ciphertext (text

without sense), the process can be reversed by a key and gets the plaintext from

the ciphertext, this reverse process is called decryption. Cryptosystems can be char-

acterized in two types depending on the key which could be private key (symmetric)

or public key (asymmetric). The former uses the same key for encrypt and decrypt

while the latter has two different keys, one for encrypt and another for decrypt. The

symmetric cryptosystems can be divided in block ciphers and stream ciphers, the

first one takes groups of characters and encrypt simultaneously and the second one

takes individually characters.

1
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One classic way to build a stream cipher 1,2 is by means of a Pseudo-Random

Bit Generator (PRBG), the sequence of bits and information are masked through

a xor gate and the output corresponds to a ciphertext. In this type of systems the

key is a parameter (like the initial condition), so if we use a different key we will

have a different sequence.

Many researchers in the field of nonlinear dynamics have become aware of the

relationship between chaos and cryptography, for example in 3,4 the authors have

made a comparison between the properties of these areas and show that the er-

godicity, sensitivity to initial conditions and control parameter, mixing property,

deterministic dynamics and complex structure are analogous to confusion, sensi-

tivity to key, diffusion, deterministic pseudo randomness and algorithm complexity

resulting in a very active new area of research, where the cryptosystems based on

chaotic systems can be classified in two: continuous-time systems and discrete-time

systems.

Cryptosystems based on continuous-time used techniques such as modulation
5,6, masking 7,8, synchronization 9,10, and even hyperchaotic systems 11, etc. On

the other hand, discrete-time systems have been used for designing stream ciphers
12−15 (in these cryptosystems the pseudo random sequences are obtained from the

time series) and block cipher 16−19. The idea of using chaotic systems to gener-

ate pseudo random sequences was given by S. Oishi et al
20 in 1982, since then

many approaches have proposed various ways to exploit the sensitivity to initial

conditions and their parameters as well as their behavior like randomization and

unpredictability, without forgetting that their behavior is deterministic and easy to

reproduce.

In this paper, we present a pseudo-random bit generator based on two lag time

series of the logistic map using positive and negative values in the bifurcation pa-

rameter. These pseudo-random sequences passed the NIST test, so they can be used

in stream ciphers algorithms.

This paper is organized as follows. In the next Section we briefly introduce the

logistic map when the parameter takes negative and positive values. In Section 3,

a basic classification of the pseudo-random number generation is given and also a

pseudo random bit generator is introduced. In Section 4 we show the results of the

statistical suite test of randomness proposed by NIST which is used to prove safety

of the sequences. Finally, in Section 5 are the conclusions.

2. Negative and positive values in the parameter of logistic map

The logistic map is a discrete time system whose dynamics is given in one dimension,

and has the form

xk+1 = f(xk), k = 0, 1, 2, . . .

Where xk ∈ ℜ and x0 is the initial condition, such dynamical system is usually

referred to as map, as it is fully determined by its right hand side. To ensure
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boundedness of trajectories, the study is usually restricted to maps that are mapping

some compact interval into itself. The simplest non-monotonous maps are the so-

called unimodal maps.

The logistic map was first presented by Verhulst 21 as a model for the growth of

species and is one of the classics in the field of discrete nonlinear dynamics. Later

Fiegenbaum 22,23 reported some of the universal quantitative features. The logistic

map has been extensively studied and some basic properties are given in 24,25 and

more properties can be found in 26. A generalized logistic map for multiple modal

has been reported in 27,28.

The logistic map is defined as

fL(x, α) = αx(1 − x), (1)

where α ∈ Ip ⊂ ℜ is the bifurcation parameter. Generally, the parameter α has been

studied on the interval I+ = [0, 4]. However, mathematically nothing restricts to

take negative values, thus the logistic map has been also studied for negative values

in the interval I
−

= [−2, 0). In 29 have had a look at the dynamics of the map at

these two real intervals and they have obtained useful information for sociospatial

stocks. Because when the parameter α belongs to these intervals I+ and I
−
ensures

that orbits do not escape to infinity for some initial conditions. Figure 1 shows the

logistic map for different values of α ∈ Ip = I+ ∪ I
−
which presents one or two fixed

points located at 0 and at
α− 1

α
, for α 6= 0.
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Fig. 1. Logistic map for different values of α: -2 (line formed by triangles), -1.3333 (line formed

by diamonds), -0.666 (line formed by squares), 1.3333 (line formed by asterisks), 2.666 (line formed
by circles), 4 (line formed by crossings).

The local stability of fixed points can be attractive or repulsive as is shown in
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Figure 2, where an asterisk denotes an attractive fixed point and a circle denotes a

repulsive fixed point. The fixed point located at zero is repulsive for α ∈ [−2,−1]∪

[1, 4] and is attractive for α ∈ (−1, 1). Then local bifurcations occurs at (x, α) equals

to (0,−1) and (0, 1). The second fixed point given by α−1

α
is attractive for α ∈ [1, 3)

and is repulsive for α ∈ [3, 4]. Also there is another fixed point which is repulsive

and is located at 1.5 and only exists for α = −2. Thus local bifurcations occurs at

(x, α) equals to (0, 1) and (2/3, 3).

Fig. 2. Stability of the fixed points. The asterisks and circles denote stable and unstable fixed
points, respectively.

Fig. 3. Bifurcation diagram for the logistic map given by Eq 1.
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It is well known that an attractive fixed point does not let oscillations due to

all orbits converge to it, meanwhile a repulsive fixed point can yield periodic orbits

and even chaotic orbits. Figure 3 shows a bifurcation diagram of the logistic map

fL(x0, α), with α ∈ [−2, 4]. However, fL : [0, 1] → [0, 1] for α ∈ [0, 4], otherwise

fL : [−0.5, 1.5] → [−0.5, 1.5]. The bifurcation diagram nicely shows the forking of

the possible periods of stable orbits from 1 to 2 to 4 to 8 etc. Each of these bifur-

cation points is a period-doubling bifurcation for the right side of the bifurcation

diagram. The ratio of the lengths of successive intervals between values of α for

which bifurcation occurs converges to the first Feigenbaum constant. On the other

hand, a period halving bifurcation is presented for the left side of the bifurcation

diagram. A series of period-halving bifurcations leads the system from chaos to

order.

The Lyapunov exponent, which is denoted by λ, gives the global stability of

the system Eq.(1) and it is shown in Figure 4. Note that the graph given by the

Lyapunov exponent is symmetric with respect to α = 1, therein the dynamics of the

logistic maps for the parameter α ∈ [1, 4] is resembled for α ∈ [−2, 1]. This symmetry

is given despite of fixed points are different, see Figure 2. When α ∈ (−1, 1) the

system only has one attractive fixed point located at zero and λ < 0, so every orbit

converges to the fixed point. For α ∈ [1, 3), the system has two fixed points: one

attractive and the other repulsive, but λ < 0, again every orbit converges to the

attractive fixed point. For α = 3 the system presents a bifurcation and the value

of λ = 0. For α ∈ (3, 4], the system has two fixed points and both are repulsive

and λ < 0 when the orbit periodically oscillates or λ > 0 when the orbit oscillates

chaotically. Finally, when α = −2 the system has two fixed points and both are

repulsive and λ > 0 therefore the orbit oscillates chaotically.
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Fig. 4. Lyapunov exponent of the Logistic map.
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3. Proposed Pseudo-Random bit generator

Before discussing the approach to generate pseudo-random series, we introduce some

basic concepts of random number generators (RNG), as in 2

• Definition 1: A True Random Number Generator (TRNG) is characterized by the

fact that its output cannot be reproduced. This generator is based on physical

processes like semiconductor noise. In cryptography, TRNG is often necessary for

generating session keys but not for stream ciphers.

• Definition 2: A (General) Pseudo-random Number Generator (PRNG) generates

sequences which are computed from an initial seed value, note that PRNG’s are

not random in a true sense because of their pseudo-random series are computed

in a completely deterministic way. A common requirement of PRNG’s is that

they possess good statistical properties, meaning their output approximates a

sequence of true random numbers.

• Definition 3: A Cryptographically Secure Pseudo-random Number Generator

(CSPRNG) is a special type of PRNG which possesses the following additional

property: a CSPRNG is a PRNG but is unpredictable. This means given n con-

secutive bits of the key stream, there is no polynomial time algorithm that can

predict the next bit sn+1 with better than 50 % chance of success. Another prop-

erty of CSPRNG is that given the above sequence, it should be computationally

infeasible to compute any preceding bits sn−1, sn−2.

In this work we are proposing an algorithm to generate a CSPRNG based on

two time series of the logistic map, starting from arbitrary initial condition, we have

used two different values of the parameter α and 3 units of memory for each time

series. The block diagram of the proposed CSPRNG is shown in Figure 5

For the time series M1 we have fixed a bifurcation parameter α equal to 4 and

iterate the logistic map equation with an arbitrary initial condition x0 ∈ (0, 1). In

order to remove the shape of the logistic map in the phase space, the time series M1

is given by adding: the current iteration xi, the iteration with a delay of 5 units xi−5

and the iteration with a delay of 10 units xi−10. Finally the values of the time series

M1 ∈ (0, 1) have been limited by the operation mod 1, this is shown as follows:

M1i = xi−10 + xi−5 + xi, mod 1. (2)

On the other hand, M2 time series have been performed in a similar process but

now with the parameter α equal to -2. Now the time series M2 is given by adding:

the current iteration xi, the iteration with a delay of 6 units xi−6 and the iteration

with a delay of 10 units xi−10, and the values of the time series M2 ∈ (0, 1) are

bounded with the operation mod 1, this is shown as follows:

M2i = xi−10 + xi−6 + xi, mod 1. (3)
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Finally, the time series z is obtained by mixing these two times series M1 and

M2, as follows:

Fig. 5. Block diagram of the proposed Cryptographically Secure Pseudo-random Number Gen-
erator (CSPRNG).

Zi = M1i +M2i, mod 1. (4)

The combination of two time series represented by Zi destroys the structure of

the chaotic map used, this can be seen in the phase space in Figure 6. In order to

get the binary time series of Zi, si(Zi) ∈ {0, 1}, with the same probability to obtain

zeros or ones, thus the process for getting the binary series is as follows:

si =

{

0 0 < Zi ≤ 0.5;

1 0.5 < Zi < 1.
(5)

Remark: If a designer wants to use other values of the bifurcation parameter, fist

must analyze the Lyapunov exponent to ensure the asymptotic independence of

two trajectories.

For security reasons and in order to increase the keyspace, we use the high

sensitivity on the initial condition and bifurcation parameter, we iterate the al-

gorithm 200 times without considering its output bits. Therefore, the encryption
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process starts by applying the XOR logic function to the bits of the plaintext and

the keystream, so this way ciphertext bits are generated. The decryption process is

completely the same as the encryption process.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Zn

Z
n+

1

Fig. 6. Phase space from the time series of the proposed CSPRNG.

4. The Statistical Suite Test

To characterize pseudo-random bit series and show that the proposed approach

is safe for use in cryptography is important to analyze series with a variety of

statistical tests. These statistical tests determine whether the sequence possesses

specific characteristics as those truly random sequences would be exhibited. There

are several options available for analyzing the randomness of the pseudo-random bit

generators for example the suite developed by Beker and Piper 30, the Gustafson’s

suite 31 or the DIEHARD suite 32, however the most used test for military and

commercial purposes is the defined by the NIST 33 that contains a sufficient number

of independent statistical tests, which detect any deviation from the randomness, in

other words with this suite we have a theoretical reference distribution of statistic

determined by mathematical methods, in addition the results of statistical testing

must be interpreted with some care and caution to avoid incorrect conclusions about

a specific generator. First we need to define a significance level σ. Typically, it is

chosen in the range [0.001, 0.01], by default σ = 0.01 and indicates that one would

expect one sequence in 100 sequences to be rejected by the test if the sequence was

random.

The NIST has adopted two ways to interpret empirical results in this paper we

used the examination of the proportion of sequences that pass a statistical test. For

this we need the confidence interval defined as follows:
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(1− σ)± 3

√

1− (1− σ)

m
, (6)

where σ = 0.01 and m is the sample size of sequences in this case we take

2000 sequences and each has 1000000 of elements. If the proportion falls outside of

this interval, then there is evidence that the data is non-random. Now, time series

generated by Eq.(5) are analyzed by the statistical tests of NIST suite and the

results are as follows:

• Frequency (Monobit) Test: This test verifies whether the number of ones and

zeros in a sequence are approximately the same as would be expected for a truly

random sequence. The test assesses the closeness of the fraction of ones to 1

2
.

We have obtained that 1974 sequences have passed the test and 26 have failed

the test, that is, the number of ones in series is approximately the same that the

number of zeroes.

• Frequency Test within a Block: This test determines whether the frequency of

ones in an M-bit block is approximately M
2
, as would be expected under an

assumption of randomness. For block size M=1, this test degenerates to the Fre-

quency (Monobit) test. We set the value of blocks with M=128, our results have

shown that 1974 sequences have passed the test and 26 sequences have failed the

test then the number of ones within a block is about the same.

• Runs Test: A run of length k consists of exactly k identical bits and is bounded

before and after with a bit of the opposite value. This test determines whether the

number of runs of ones and zeros of various lengths is as expected for a random

sequence. In particular, this test determines whether the oscillation between such

zeros and ones is too fast or too slow. We have obtained that 1980 sequences have

passed the test and 20 sequences have failed the test.

• Test for the Longest Run of Ones in a Block: This test determines whether the

length of the longest run of ones within the tested sequence is consistent with the

length of the longest run of ones that would be expected in a random sequence.

Note that an irregularity in the expected length of the longest run of ones implies

that there is also an irregularity in the expected length of the longest run of zeroes.

Therefore, only a test for ones is necessary. For this test the size of the block M

depends on the length of the sequence; in this case M=104 and the results have

shown that 1981 sequences have passed the test and 19 sequences have failed the

test.

• Binary Matrix Rank Test: This test checks for linear dependence among fixed

length substrings of the original sequence, for this test is necessary to construct

square matrices of 1024 elements, so we have obtained that 1978 sequences have

passed the test and 22 sequences have failed the test, then the generator produces

linearly independent sequences.

• Discrete Fourier Transform (Spectral) Test: This test detects periodic features

(i.e., repetitive patterns that are near each other) in the tested sequence that



August 16, 2013 17:30 WSPC/INSTRUCTION FILE sequence˙4
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would indicate a deviation from the assumption of randomness. For this test we

have used the Discrete Fourier Transform in order to detect peak heights. The

results have shown that 1966 sequences have pass the test and 34 sequences have

failed the test, then we have obtained series with non-periodicity.

Fig. 7. Confidence interval of Part 1 of the results.

• Non-overlapping Template Matching Test: This test and the Overlapping Tem-

plate Matching test use an M-bit window to search for a specific M-bit pattern

with the purpose of detect generators that produce too many occurrences of a

given non-periodic (aperiodic) pattern. If the pattern is not found, the window

slides one bit position. If the pattern is found, the window is reset to the bit after

the found pattern, and the search resumes. For this test we have used M=9, and

the templates and the results are shown as follows: a)000000001, 1981 sequences

have passed and 19 sequences have failed the test, b)000100111, 1984 sequences

have passed and 16 sequences have failed the test, c)001010011, 1985 sequences

have passed and 15 sequences have failed the test, d)010001011, 1985 sequences

have passed and 15 have failed the test.

• Overlapping Template Matching Test: The difference between this test and the

Non-overlapping test is that when the pattern is found, the window slides only

one bit before resuming the search. We have obtained that 1973 sequences have

passed the test and 27 sequences have failed the test using a window M=9.

• Maurer’s Universal Statistical Test: This test detects whether or not the sequence

can be significantly compressed without loss of information. We have obtained
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that 1977 sequences passed the test and 23 sequences have failed the test, if a

sequence is significantly compressible then it is considered to be non-random.

Fig. 8. Confidence interval of Part 2 of the results.

• Linear Complexity Test: This test determines whether or not the sequence is

complex enough to be considered random, random sequences are characterized

by longer Linear Feedback Shift Register with this test we check the length of a

LFSR. For this test we have obtained that 1980 sequences have passed and 20

sequences have failed the test. An LFSR that is too short implies non-randomness.

• Serial Test: This test determines whether the number of occurrences of the 2M

M-bit overlapping patterns is approximately the same as would be expected for a

random sequence. Random sequences have uniformity; that is, every m-bit pattern

has the same chance of appearing as every other M-bit pattern. Note that for

M=1, the Serial test is equivalent to the Frequency test. For this test we have

used M=16, the NIST uses two different algorithms to compute this test we have

obtained that 1975 sequences have passed and 25 sequences have failed the test

and for the other algorithm we have had that 1987 sequences have passed and 13

sequences have failed the test.

• Approximate Entropy Test: This test compares the frequency of overlapping

blocks of two consecutive/adjacent lengths (m and m+1) against the expected

result for a random sequences. For this test we have taken the block M=10 and

have obtained that 1976 sequences have passed and 24 sequences have failed the
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test.

• Cumulative Sums (Cusum) Test: This test determines whether the cumulative

sum of the partial sequences occurring in the tested sequence is too large or

too small relative to the expected behavior of that cumulative sum for random

sequences. For compute this test the NIST has adopted two ways (forward and

backward) and in both cases the sum could be near zero, we have obtained the

following results: a)Forward, 1973 sequences have passed and 27 sequences have

failed the test, b)Backward, 1987 sequences have passed and 13 sequences have

failed the test.

• Random Excursions Test: This test determines if the number of visits to a par-

ticular state within a cycle deviates from what one would expect for a random

sequence. This test is actually a series of eight tests, one test and conclusion for

each of the states: -4, -3, -2, -1 and 1, 2, 3, 4. We have obtained the following

results: a)-4, 1977 sequences have passed and 23 sequences have failed the test,

b)-3, 1974 and 26 sequences have passed and failed the test, respectively, c)-2,

1980 and 20 sequences have passed and failed the test, respectively, d)-1, 1974

and 26 sequences have passed and failed the test, respectively, e)1, 1972 and 28 se-

quences have passed and failed the test, respectively, f)2, 1983 and 17 sequences

have passed and failed the test, respectively, g)3, 1977 and 23 sequences have

passed and failed the test, respectively, h)4, 1988 and 12 sequences have passed

and failed the test, respectively.

• Random Excursions Variant Test: This test detects deviations from the expected

number of visits to various states in the random walk. This test is actually a

series of eighteen tests, one test and conclusion for each of the states: -9, -8, ...,

-1 and 1, 2, ..., 9. Our results have shown to be good and they are presented as

follows (state, passed sequences, failed sequences): a)(-9, 1985, 15), b) (-8, 1988,

12), c) (-7, 1991, 9), d) (-6, 1978, 22), e) (-5, 1977, 23), f) (-4, 1980, 20), g) (-3,

1977, 23), h) (-2, 1977, 23), i) (-1, 1985, 15), j) (1, 1988, 12), k) (2, 1988, 12), l)

(3, 1987,13), m) (4, 1893, 17), n) (5, 1980, 20), o) (6, 1980, 20), p) (7, 1978, 22),

q) (8, 1978, 22), r) (9, 1985, 15).

The above test are summarized in the tables 1 and 2, the first column indi-

cates the name of the test, the second and third columns contain the number of

sequences that passed and failed, respectively, and the last column shows the pro-

portion sequences that passing the test. In Figures 7 and 8, it is clear that the

portion for each test lies inside the confidence interval, hence the proposed PRBG

is Cryptographically Secure according the test of the NIST.

5. Conclusion

In this paper we have presented a theoretical analysis for negative and positive

values in the parameter of the logistic map. Also, the analysis of equilibrium points

is included as well as the stability. The corresponding bifurcation diagram was

obtained and Lyapunov exponent analysis indicates that the logistic map presents
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Table 1. Part 1 of the results of the suite of statistical tests.

Statistical Test No. sequences No. sequences Proportion sequences
success failure passing the test

Frequency (Monobit) Test 1974 26 0.9870
Frequency Test 1974 26 0.9870

within a Block (Block=128)
Runs Test 1980 20 0.9900

Test for the Longest Run 1981 19 0.9905
of ones in a Block

Binary Matrix Rank Test 1978 22 0.9890
Discrete Fourier Transform 1966 34 0.9834

(Spectral) Test
Overlapping Template 1973 27 0.9865

Matching Test (Block=9)
Maurer’s Universal 1977 23 0.9885
Statistical Test

Approximate Entropy 1976 24 0.9880
Test (Block=10)
Linear Complexity 1980 20 0.9900
Test (Block=500)

chaotic behavior when the parameter takes certain positive and negative values.

Besides we present a Pseudo Random Bit Generator based on two time series of

the logistic map, in order to obtain a more complex sequence we have used a delay

in the map, finally we have shown that the pseudo-random sequences satisfy all

the tests of the NIST suite. Thus these satisfactory results can be used to generate

stream ciphers.
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Table 2. Part 2 of the results of the suite of statistical tests.

Statistical Test No. sequences No. sequences Proportion sequences
success failure passing the test

Serial Test 1 (Block=16) 1975 25 0.9875
Serial Test 2 (Block=16) 1987 13 0.9935

Cumulative Sums (Cusum) Test
a)Forward 1973 27 0.9865
b)Backward 1987 13 0.9935

Non-overlapping Template
Matching Test(Block=9)

a) 1981 19 0.9905
b) 1984 16 0.9920
c) 1985 15 0.9925
d) 1985 15 0.9925

Random Excursions Test
a)-4 1977 23 0.9886
b)-3 1974 26 0.9870
c)-2 1980 20 0.9902
d)-1 1974 26 0.9870
e)1 1972 28 0.9862
f)2 1983 17 0.9919
g)3 1977 23 0.9886
h)4 1988 12 0.9943

Random Excursions Variant Test
a)-9 1985 15 0.9927

b)-8 1988 12 0.9943
c)-7 1991 9 0.9959
d)-6 1978 22 0.9894
e)-5 1977 23 0.9886
f)-4 1980 20 0.9902
g)-3 1977 23 0.9886
h)-2 1977 23 0.9886
i)-1 1985 15 0.9927
j)1 1988 12 0.9943
k)2 1988 12 0.9943
l)3 1987 13 0.9935
m)4 1893 17 0.9919
n)5 1980 20 0.9902
o)6 1980 20 0.9902
p)7 1978 22 0.9894
q)8 1978 22 0.9894
r)9 1985 15 0.9927
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