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Maximal unstable dissipative interval to preserve

multi-scroll attractors via multi-saturated functions

Dı́az-González E. C. López-Renteŕıa, J. A.

Campos-Cantón, E. Aguirre-Hernández, B.

Abstract

In this paper, we present families of piecewise linear systems which are
controlled by a continuous piecewise monoparametric control function
for the generation of monoparametric families of multi-scroll attractors.
Thus the maximum range of values that the parameter set can take
in order to preserve the useful dynamics for generating of multi-scroll
attractors is found and it will be called maximal robust dynamics inter-
val (MDI). This class of dynamical systems is the results of combining
two or more unstable “one-spiral” trajectories. We give necessary and
sufficient conditions in order to preserve multiscroll attractors in terms
of a parameter, i.e., a family of multi-scroll attractors is generated by
means of a family of switching systems with multiple monoparametric
companion matrices. Lastly, we provide an example to show how the
developed theory works.

1 Introduction

Currently, generation of multi-scroll chaotic attractors has been extensively
studied and it is no longer a very difficult task to find a set of fixed param-
eter values to generate multi-scroll attractors. Since the pioneering work
of Suykens & Vandewalle [14, 15], several chaos generation mechanisms are
further investigated by analyzing their trajectories and electronic imple-
mentation [13, 17]. For example, Lü et al. [9] introduced a hysteresis series
switching approach for generating multi-scroll chaotic attractors, and the
hysteresis series used is a discontinuous control function. Other system-
atic methods for generating multi-scroll chaotic attractors using discontin-
uous control function are dissipative linear systems with unstable dynamics

Keywords: Unstable Dissipative Systems; Switching Systems; Chaotic Systems; Linear

Control Systems.
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(UDS’s) approaches by Campos-Cantón et al. [6, 7, 12]. On the other
hand, there are methods to create the multi-scroll chaotic attractors using
continuous control functions, for example, by saturated functions [10] or
threshold functions [11]. And so we find in the literature a lot of works ded-
icated to the generation of multi-scroll attractors [16, 18] based on piecewise
linear systems or nonlinear systems by means of multiplying their states.
In this work, we are interested in continuous piecewise functions (saturate
functions) as controllers for the generation of monoparametric families of
multi-scroll attractors.

There is a class of dynamical systems that have saddle equilibrium points
as responsible for stretching and folding behavior displayed by multi-scroll
attractors, i.e., chaotic behavior emerging from saddle equilibrium points in
this kind of dynamical systems. Thereby, after previous works a question
arises as follows: what is the maximum range of values that the parameter
set can take to preserve the useful dynamics for the generation of multi-scroll
attractors? This question was firstly answered by Aguirre-Hernández et al.
[1] using discontinue control functions and UDS’s in R

3. The stable subspace
of this kind of UDS’s has stability index 1. Another form related with the
stability index of UDS’s is the instability index, in this case it is instability
index 2. Discontinuous functions have been used to handle linear systems
that have only saddle equilibria with the same stability index. So the MDI
is only determined by this type of equilibria and families of multi-scroll
attractor are defined based on segment of polynomials. On the other hand,
continuous control functions can deal with saddle equilibria of UDS’s with
different stability index (1 and 2). So the multi-scroll attractors oscillate
around these two type of saddle equilibria. In this work, we are interested
in continuous piecewise functions (saturate functions) as controllers for the
generation of monoparametric families of multi-scroll attractors.

In control theory applied to linear systems, families of polynomials have
been widely studied with the purpose of stabilizing feedback controller sys-
tems, continuous or discrete time (see for instance [4, 5] and references
therein). In the sense of stability of continuous-time linear systems, a poly-
nomial is said to be stable if all of its roots have negative real part. These
polynomials are also called Hurwitz polynomials, in reference of Hurwitz
stability for continuous linear systems. On the other hand, a polynomial
is said to be unstable if at least one root has positive real part. Similarly,
in discrete-time linear systems, a polynomial is said to be stable if all of
its roots have modulus less than one. These polynomials are also called
Schur polynomials in reference to Schur stability for discrete linear systems.
On the other hand, a polynomial is said to be unstable if at least one root
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has modulus greater than one. The target is the choice of one parameter
required to hold stability of the control system, maintaining its spectrum
in the stability zone, i.e., if the characteristic polynomial is stable then it
is possible to perturb the system via a chosen parameter to find a ray or
segment of stable polynomials as it is done in [2, 3]. The concept of rays and
segments will be given in the section 2. In this way the maximal stability
interval [4, 8] is determined by a family of stable characteristic polynomials.
Thus, if the selected parameter value belongs to the maximal stability inter-
val then the eigenvalues of the Jacobian matrix are contained in the stability
zone. Our case study is when the parameter value takes values outside the
maximal stability interval, so the dynamics of the system changes to be un-
stable which means that one or more eigenvalues are outside of the stability
zone. Depending on the number of the eigenvalues inside and outside the
stability zone is the class of dynamics obtained, for instance, dissipative sys-
tems with unstable dynamics (UDS’s) have a saddle-focus equilibrium which
is responsible for stable and unstable manifolds and the sum of its eigenval-
ues is negative. In R

3, we consider two types of UDS’s defined as follows: if
the Jacobian of the system at the equilibrium point x0 has eigenvalues λi,
i = 1, 2, 3 with

∑3
i=1 λi < 0, then the system is said to be dissipative and

it will be called UDS of type I (UDS-I) if the spectrum of the Jacobian of
the system is comprised by one negative real eigenvalue and the other two
are complex conjugate with positive real part; whilst it is said to be of type
II (UDS-II) if one of its eigenvalues is positive real and the other two are
complex conjugate with negative real part. Based on this class of dynamical
systems is possible to generate a double-scroll attractors as the result of the
combination of two unstable “one-spiral” trajectories.

In this work, a family of multi-scroll attractors generated by a family
of switching systems with multiple monoparametric companion matrices is
provided. A better description of the problem will be given in the section
2. The rest of the work is organized as follows: In section 2 we present
the description and statement of the problem of generating multi-scroll at-
tractors by switching UDS’s. The section 3 contains a test to determine
if a polynomial satisfies the conditions of instability and dissipativity. The
section 4 contains the preliminaries of the dynamics behavior in closed-loop
systems with a polynomial approach; the description of the class of controls
and systems to be treated is given. In the section 5, we describe a tech-
nique to generate families of multiple-scrolls attractors via piecewise linear
systems based on UDS. An illustrative example is given. Finally conclusions
are drawn in Section 6.
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2 Statement of the problem

The problem of generating chaotic attractors emerging from PWL systems
has been addressed by constructing a monoparametric family of dynamical
systems well called control systems of the form:

χ̇ = Ãχ+ b̃u, (1)

where χ ∈ R
n is the state vector, Ã ∈ R

n×n is a linear operator, b̃ ∈ R
n is a

constant vector. The characteristic polynomial of the matrix Ã is pÃ(t) =

tn + a1t
n−1 + · · · + an−1t + an. It is well known that if the pair (Ã, b̃) is

completely controllable, then there exists a change of coordinates x = Q−1χ
such that the system (1) is expressed as

ẋ = Ax+ bu, (2)

where

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1















, b =















0
0
...
0
1















.

The most commonly used controllers for this class of systems are of the form
u = −kcTx, with uncertain vector cT = (cn, cn−1, . . . , c1). Then the char-
acteristic polynomial of the closed loop system is given by pA(t) + kp1(t),
which is a ray of polynomials where pA(t) is the vertex and p1(t) = cnt

n−1+
cn−1t

n−2 + · · · + c1 is the direction. If pA(t) is unstable then it is possi-
ble to perturb the system via the parameter k to find a ray or a segment
of the ray, consisting on unstable polynomials. That is, the maximal in-
terval (k−min, k

+
max) for which the family pA(t) + kp1(t) keeps the dynamics

proportioned by pA(t) will be determined.
Our case study is when the k parameter belongs to the maximal unstable

interval, in order to generate a family of UDS’s with saddle-focus equilibrium
which is responsible for stable and unstable manifolds and the sum of its
eigenvalues is negative. In order to generate a family of attractors via UDS’s
with multiple saddle hyperbolic equilibria p1, p2, . . . , pm, we provide a family
of piecewise affine continuous systems that generate multi-scroll attractors
emerging from a system (2), endowed of the family of switching laws uj
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which arises piecewise linear systems of the form

ẋ =



















A1(k)x+ bu1, for x ∈ Dp1 ;
A2(k)x+ bu2, for x ∈ Dp2 ;

...
Am(k)x+ bum, for x ∈ Dpm ;

(3)

where k ∈ (k, k), Dpi ⊂ R
3 are the domains for each ui, 1, 2, . . . ,m, such

that ∩m
i=1Dpi = ∅ and ∪m

i=1Dpi = R
3. The interval (k, k) is the maximal

interval of dissipativity and robust dynamics, that is, the maximal interval
of perturbation of the matrix A for still having scroll attractors around the
equilibria pi = −A−1(k)bui. To achieve the aforementioned aim we assume
that the system (2) satisfies:

DS1 is UDS at the equilibrium point p = −A−1bu ∈ R
3.

DS2 is in controllable canonical form.

In the following sections we shall design the switching systems Ai(k)x+ bui,
i = 1, . . . ,m, for m ≥ 3.

3 Hyperbolic equilibria of type I and II

The analysis begins with single tests to know if a polynomial satisfies the in-
stability and dissipative conditions. To establish this characterization of the
hyperbolic equilibria of type I and II it is necessary the following definition
and result.

Definition 3.1. A 3-degree polynomial p(t) will be called dissipative if it has
roots λi, i = 1, 2, 3 with

∑3
i=1 λi < 0. A dissipative polynomial p(t) will

be called UDS-I polynomial if it has one negative real root and the other
two are complex conjugate with positive real part; whilst it will be called
UDS-II polynomial if one of its roots is positive real and the other two are
complex conjugate with negative real part.

Lemma (3.2). The polynomial p(t) = t3 + a1t
2 + a2t + a3 has two pure

imaginary roots if and only if a2a1 − a3 = 0 and a2 > 0.

Proof. (⇒) If iω is a root of p(t) then a3−a1ω
2+ iω(a2−ω2) = 0. It implies

that a3 − a1ω
2 = 0 and a2 = ω2. Thus a2a1 − a3 = 0 and a2 > 0.
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(⇐) If a2a1 − a3 = 0 and a2 > 0 then

p(t) = t3 + a1t
2 + a2t+ a2a1

= t(t2 + a2) + a1(t
2 + a2)

= (t+ a1)(t
2 + a2)

= (t+ a1)(t+ i
√
a2)(t− i

√
a2)

Example 3.3. Consider the polynomial p(t) = t3 − t2 + 4t − 4 we can see
that a2 = 4 > 0 and a2a1 − a3 = (4)(−1) − (−4) = 0. Therefore, p(t) has
two pure imaginary roots.

The lemma 3.2 gives the possibility to determine the limits of the max-
imal unstable interval. We are interested in finding polynomials that guar-
antee the generation of UDS-I. So note that if p(t) = t3 + a1t

2 + a2t + a3
is a polynomial with a3 > 0 and has two roots of the form α ± iβ, α > 0,
from the analysis of the derivative of p(t) and its discriminant 4a21 − 12a2,
(a21 − 3a2), the following theorem is held.

Lemma (3.4). The polynomial p(t) = t3+a1t
2+a2t+a3 has a negative real

root and two complex conjugate roots α ± iβ with α > 0 and β 6= 0 if and
only if a3 > 0 and one of the following cases is satisfied:

a) a21 − 3a2 ≤ 0 and [a2a1 ≤ 0 or a2a1 − a3 < 0];

b) a21 − 3a2 > 0,
−a1+

√
a2
1
−3a2

3 < 0 and

p

(

−a1 −
√

a21 − 3a2
3

)

> 0;

c) a21 − 3a2 > 0,
−a1−

√
a2
1
−3a2

3 > 0 and

p

(

−a1 +
√

a21 − 3a2
3

)

> 0;

d) a21 − 3a2 > 0,
−a1−

√
a2
1
−3a2

3 < 0,
−a1+

√
a2
1
−3a2

3 > 0 and

p

(

−a1 ±
√

a21 − 3a2
3

)

> 0.
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Proof. ⇒]. If p(t) = t3 + a1t
2 + a2t + a3 (a3 > 0) has a negative real root

and two complex conjugate roots α ± iβ with α > 0 and β 6= 0 then the
graph of p(t) can have the following forms (see Figure 1):
The graphs are determined from the behavior of the derivative p′(t): In the

Figure 1: Graph of p(t).

graphs 1 and 3 the function p(t) is increasing and then p′(t) = 3t2+2a1t+a2
is positive for every value of t whence a21 − 3a2 ≤ 0; consequently a) is
obtained.

The graph 2 indicates that p(t) has two negative critical points (when
p′(t) = 0) that determines both local minimum and maximum values where

the local maximum value is negative, that is, a21−3a2 > 0,
−a1+

√
a2
1
−3a2

3 < 0

and p(
−a1−

√
a2
1
−3a2

3 ) > 0; thence b) is obtained.
The graph 4 indicates that p(t) has two positive critical points (when

p′(t) = 0) that determines a local minimum value and a local maximum
value which the local minimum value is positive, that is, a21 − 3a2 > 0,
−a1−

√
a2
1
−3a2

3 > 0 and p(
−a1+

√
a2
1
−3a2

3 ) > 0 and then c) is obtained.
The graph 5 indicates that p(t) has a negative critical point and one

positive (when p′(t) = 0) that determines a local maximum value and a local

minimum value which both are positive, that is, a21−3a2 > 0,
−a1−

√
a2
1
−3a2

3 <

0,
−a1+

√
a2
1
−3a2

3 > 0 and p(
−a1±

√
a2
1
−3a2

3 ) > 0 and then d) is obtained.
⇐] Suppose that a) is satisfied, then p′(t) ≥ 0 for every t ∈ R, then p(t) is an
increasing function. Since a3 > 0 we obtain the graph 1 and consequently
p(t) has a negative root and two roots α+ iβ with α > 0 and β 6= 0. Similar
proofs can be obtained for other cases.

Example 3.5. If we consider the following polynomial p0(t) = t3+t2+4t+30,
we can see that it satisfies
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1. a3 = 30 > 0,

2. 4a21 − 12a2 = −52 < 0,

3. a2a1 − a3 = −26 < 0.

That is, p0(t) satisfies condition a) from lemma 3.4, so it has one real nega-
tive root and two roots in the form α+ iβ with α > 0 and β 6= 0.

Similarly, by taking f(t) = p(−t) the following result, in order to char-
acterize the hyperbolic points of type II is held.

Lemma (3.6). The polynomial f(t) = t3 + b2t
2 + b1t+ b0 has a positive real

root and two complex roots in the form α ± iβ, α < 0 if and only if one of
the following is satisfied:

a) b0 < 0, b22 − 3b1 ≤ 0 and [b1b2 ≥ 0 or b0 − b1b2 < 0];

b) b0 < 0, b22 − 3b1 > 0,
−b2+

√
b2
2
−3b1

3 < 0 and

f

(

−b2 −
√

b22 − 3b1
3

)

< 0;

c) b0 < 0, b22 − 3b1 > 0,
−b2−

√
b2
2
−3b1

3 > 0 and

f

(

−b2 +
√

b22 − 3b1
3

)

< 0;

d) b0 < 0, b22 − 3b1 > 0,
−b2−

√
b2
2
−3b1

3 < 0,
−b2+

√
b2
2
−3b1

3 > 0 and

f

(

−b2 ±
√

b22 − 3b1
3

)

< 0.

Proof. It is similar to the proof of lemma 3.4.
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4 The maximal UDS interval

As it has been pointed out, the object of study in this work is the generation
of strange attractors from point of view of the control design theory by
considering the control system

ẋ = Ax+ bu, (4)

where b ∈ R
n and the pair (A, b) is in controllable canonical form. Besides, if

the linear control u(k,x) = −kcTx is considered, with cT = (cn, cn−1, . . . , c1),
then the characteristic polynomial of the closed loop system is P (t, k) =
p0(t) + kp1(t), where k is a real parameter, p0(t) is the characteristic poly-
nomial of A and p1(t) = cnt

n−1 + cn−1t
n−2 + · · · + c1 is an arbitrary poly-

nomial. If we consider p0(t) as a stable polynomial (its n roots contained in
the open left half plane) then the polynomial family P(t, 0) = p0(t) is stable.
Thus, we can perturb the variable k around zero for keeping the stability
of the system. Such a problem is called the problem of finding the maximal
stability interval and was studied by Bialas around 1985 [4] and recently by
López-Renteria et al in [8]. Related problems were studied in [2, 3].

The aim is to establish a similar result for the family of polynomials
P (t, k) = p0(t) + kp1(t) for which p0(t) has n1 roots in C

− and n− n1 roots
in C

+ for all k in the maximal perturbed interval around zero. This is the
problem of finding the maximal robust dynamics interval with a polynomial
approach and it was solved in [1].

The following results concerning to the maximal UDS interval are re-
ported in the above cited reference.

Definition 4.1. A robust dynamics interval of the monoparametric family
pk(t) is an interval [a, b] if pk(t) has n1 roots in C

− and n− n1 roots in C
+

for all k ∈ [a, b]. The greatest of these intervals will be called the maximal
robust dynamics interval.

Consider p0(−iω) = P (ω2) − iωQ(ω2) and p1(iω) = p(ω2) + iωq(ω2),
then

P (iω, k)p0(−iω) = G(ω) + kF (ω) + ikωH(ω),

where

F (ω) = p(ω2)P (ω2) + ω2q(ω2)Q(ω2),

G(ω) = P 2(ω2) + ω2Q2(ω2),

H(ω) = q(ω2)P (ω2)− p(ω2)Q(ω2).
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Now define, for an arbitrary polynomial f(t), the set

R(f) = {ξ ∈ C : f(ξ) = 0} .

Let R(f)R+ denotes the set of positive real elements of R(f) and now we
define the sets

K+ = {F (ωl) : ωl ∈ R(H)R+ ∪ {0} , F (ωl) > 0} ,
K− = {F (ωl) : ωl ∈ R(H)R+ ∪ {0} , F (ωl) < 0} .

If there are no elements in R(H)R+ ∪ {0} such that F (ωl) > 0, then we
define K+ = {0+} . Similarly, if R(H)R+ ∪ {0} does not contain elements
such that F (ωl) < 0, so we define K− = {0−}. With the aforementioned
the following result for a polynomial family is held.

Theorem (4.2). (Maximal robust dynamics interval) Consider the polyno-
mial family P (t, k) = p0(t) + kp1(t), where p0(t) is a n−degree polynomial
with n1 roots in C

− and n− n1 roots in C
+. Suppose the n > deg p1(t) and

let F (ω), G(ω) and H(ω) be the polynomials defined above. Then P (t, k)
has n1 roots in C

− and n− n1 roots in C
+ for all k ∈ (k−min, k

+
max), where

k−min = max

{

−G(ωl)

F (ωl)
: F (ωl) ∈ K+

}

,

k+max = min

{

−G(ωl)

F (ωl)
: F (ωl) ∈ K−

}

.

If K+ = {0+} (K− = {0−}, resp.) then k−min = −∞ (k+max = ∞, resp.).

In order to create a family of USD systems, the maximal interval of
“saddleness” has been obtained and we just need the condition of negativity
for the roots sum which is the dissipativity condition (also given in [1]).

Lemma (4.3). The sum of the roots of the polynomial p(t) = a0t
n+a1t

n−1+
· · · + an−1t+ an is negative if and only if a1

a0
> 0.

The above results are sufficient to establish the maximal UDS interval.

Theorem (4.4). Consider the control system

ẋ = Ax+ bu,

where A ∈ R
n×n, b,x ∈ R

n and u = −kcTx, with k ∈ R and cT =
(cn, cn−1, . . . , c1). If the characteristic polynomial of A, p0(t) = tn+a1t

n−1+
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· · · + an, has n1 roots in C
− and n − n1 roots in C

+, then the maximal
robust dynamics interval is given by K = S ∩ (k−min, k

+
max), where S =

{k ∈ R : a1 + kc1 > 0}.

5 A family of multi-scroll attractors

In this section a family of multiple scrolls attractors will be generated based
on piecewise linear system which will be designed with changing companion
matrix depending on a real parameter k by using a multi-saturating control.

Let us to consider the control system

ẋ = Ax+ bu, (5)

with A ∈ R
3×3 and x, b ∈ R

3 and u ∈ R is a saturated control given by
u = −kcTx − fs(c

T
x), where k ∈ R, cT = (c3, c2, c1) and fs(c

T
x) is the

saturated function

fs(c
T
x) =







w, for v < cTx;
µcTx, for |cTx| ≤ v;
−w, for cTx < −v.

(6)

Suppose that the system satisfies the hypotheses DS1 and DS2. Hypothesis
DS2 allows to consider the system (5) in controllable canonical form, that
is,

A =





0 1 0
0 0 1

−a3 −a2 −a1



 , and b =





0
0
1



 ,

where its characteristic polynomial is PA(t) = t3 + a1t
2 + a2t+ a3. It is not

hard to see that

A−1 =





−a2
a3

−a1
a3

− 1
a3

1 0 0
0 1 0



 ,

and if x = (x1, x2, x3)
T , the equilibrium x

∗ = −A−1bu = (− u
a3
, 0, 0)T is

located just in the x1-axis. Thus, the plane cTx = v can be relaxed and
just consider the planes of commutation c3x1 = v and c3x1 = −v (with
c1 = c2 = 0) which they are orthogonal to x1-axis. Therefore, the saturated
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control is u = −kc3x1 − fs(x1) and fs is given by the following saturated
function:

fs(x1, w) =







w, for v/c3 < x1;
µc3x1, for |x1| ≤ v/c3;
−w, for x1 < −v/c3;

(7)

where µ is the slope of the middle segment, the upper radial {fs(x1, w) =
w : x1 ≥ v/c3} and the lower radial {fs(x1, w) = −w : x1 ≤ −v/c3} are
called saturated plateaus, and the segment {fs(x1, µ) = µx1 : |x1| ≤ v/c3}
between two saturated plateaus is called the saturated slope. For k = 0 the
system is able to generate chaotic attractor via saturated function and the
system commutes between UDS-I and UDS-II for the saturated plateaus and
saturated slope, respectively (see [10], for instance). The closed loop system
(5) with the scalar feedback control u(x, k) = −kcTx− fs(x1, w) is given by

ẋ = (A− kbcT )x− fs(x1, w)b. (8)

The characteristic polynomial of the saturate plateaus A + kbcT as given
above is PSP (t, k) = t3 + t2 + t+ (a3 + kc3) and corresponds to UDS type
I. In a similar way the characteristic polynomial of the saturate slope is
PSS(t, k) = t3 + a1t

2 + a2t+ (a3 + kc3 + µc3). The part of saturated slope
can modify the stability of the system and corresponds to UDS type II. Thus
the feedback control can modify the stability of the system and destroys the
attractor, then the previous results about the maximal unstability interval
need to be employed to warranty multiscroll behavior.

In order to achieve the emergence of multiple equilibria where the system
behaves chaotically, a multi-saturated function series is considered instead
of saturated function. Firstly, let us to consider two sets, the former is the
set of saturation values Λw = {w1, w2, . . . , wd} and the second is the set of
commutation values Λv = {v1, v2, . . . , vr} such that v1 < v2 < . . . < vr, and
w1 < w2 < · · · < wd, with d = 2(r − 1) and r, d ∈ N. The cardinality of the
set Λw is the number of scrolls in the attractor. Thus with these two sets, it
is now possible to define the piecewise continuous multi-saturated function
as follows:

12
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fs(x1,∆w,∆v) =











































wd, for vr/c3 ≤ x1;
µd−1c3x1 + βd−1, for vr−1/c3 ≤ x1 < vr/c3;

...
µ2c3x1 + β2, for v3/c3 ≤ x1 < v4/c3;

w2, for v2/c3 ≤ x1 < v3/c3;
µ1c3x1 + β1, for v1/c3 ≤ x1 < v2/c3;

w1, for x1 < v1/c3;

(9)

with

µ1 =
w2 − w1

v2 − v1
, µ2 =

w3 − w2

v4 − v3
, . . . , µd−1 =

wd −wd−1

vr − vr−1
,

and β1 = −µ1v1 + w1, β2 = −µ2v3 + w2, . . . , βd−1 = −µd−1vr−1 +wd−1.
Next, the system (5) with the multi-saturated control u = −kcTx −

fs(x1,∆w,∆v) is given as follows:

ẋ =











































(A− kbcT )x− wdb, for vr/c3 ≤ x1;
(A− (k + µd−1)bc

T )x− βd−1b, for vr−1/c3 ≤ x1 < vr/c3;
...

(A− (k + µ2)bc
T )x− β2b, for v3/c3 ≤ x1 < v4/c3;

(A− kbcT )x− w2b, for v2/c3 ≤ x1 < v3/c3;
(A− (k + µ1)bc

T )x− β1b, for v1/c3 ≤ x1 < v2/c3;
(A− kbcT )x− w1b, for x1 < v1/c3.

(10)
Then, there are two classes of equilibria which are described by the following
sets:

Ax1
=

{

wj

(

A− kbcT
)−1

b =

(

wj

a3 + kc3
, 0, 0

)T
}d

j=1

,

Bx1
=

{

βj
(

A− (k + µj)bc
T
)−1

b =

(

βj
a3 + (k + µj)c3

, 0, 0

)T
}d−1

j=1

.

The characteristic polynomial of saturate plateaus A − kbcT is the same
PSP (t, k) = t3 + a1t

2 + a2t + (a3 + kc3), whilst the characteristic poly-
nomial of saturate slopes A − kbcT + µjbc

T are PSS(t, k) = t3 + a1t
2 +

a2t + (a3 + kc3 + µjc3), j = 1, . . . , d − 1. Recall that theorem 4.2 shows
how to find the maximal robust dynamics interval for PSP and lemma 4.3

13



14

gives the dissipativity interval. Consequently, theorem 4.4 allows us to keep
unstability-dissipativity in a maximal interval, no matter what type of UDS
in the open-loop system. Hereafter, we suppose that the equilibria set Ax1

are of type I. However, it is necessary to guarantee the change of unstability
of saturate slopes polynomial characteristic from type I to II.

Lemma (5.1). Consider the polynomial PSS(t, k) = t3 + a1t
2 + a2t+ (a3 +

kc3 + µjc3) with a1 > 0. Suppose that for k = −µ, PSS has one negative
root and a pair of complex roots with positive real part (UDS I). Then PSS

has one positive root and two complex roots with negative real part (UDS II)
if and only if a21 − 3a2 > 0 and k ∈ Kj

B, where

Kj
B =







k < k1,j , if D < 0;

k < k2,j , if D > 0;

k < min {k1, k2} , if D < 0 and D > 0;

(11)

with

k1,j = min

{

− 1

c3
(D3 + a1D

2 + a2D + a3 + µjc3),−
a3
c3

− µj

}

,

k2,j = min

{

− 1

c3
(D

3
+ a1D

2
+ a2D + a3 + µjc3),−

a3
c3

− µj

}

,

and

D =
−a1 +

√

a21 − 3a2
3

,

D =
−a1 −

√

a21 − 3a2
3

.

Proof. The proof shall be based on lemma 3.6. Since PSS(t,−µ) satisfies
one of the hypothesis of lemma 3.4, then it can not satisfy item a) in lemma
3.6 for all k. However, condition a21 − 3a2 > 0 is the same in both lemmas.
Now, condition a3 + kc3 + µjc3 < 0 is satisfied if and only if k < −a3

c3
− µj.

Next, if D =
−a1+

√
a2
1
−3a2

3 and D =
−a1−

√
a2
1
−3a2

3 , we see that P (D, k) < 0
if and only if k < − 1

c3
(D3+a1D

2+a2D+a3+µjc3). Similarly, P (D, k) < 0

is satisfied if and only if k < − 1
c3
(D

3
+ a1D

2
+ a2D + a3 + µjc3). Define

k1,j = min

{

− 1

c3
(D3 + a1D

2 + a2D + a3 + µjc3),−
a3
c3

− µj

}

,

k2,j = min

{

− 1

c3
(D

3
+ a1D

2
+ a2D + a3 + µjc3),−

a3
c3

− µj

}

.

14
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Thence, item b) in lemma 3.6 is satisfied if and only if D < 0 and k < k1;
item c) is satisfied if D > 0 and k < k2, and item d) is verifiable if and only
if k < min {k1, k2}, D < 0 and D > 0. Finally, the change of unstability is
given by

Kj
B =







k < k1,j , if D < 0;

k < k2,j , if D > 0;

k < min {k1, k2} , if D < 0 and D > 0;

(12)

as we claim.

Let KAx1
be the maximal UDS I interval for saturated plateaus. Then

all the slopes of saturation are UDS II if k ∈ KBx1
=
⋂d−1

j=1 K
j
B . With all

the above discussion, the following result is held.

Theorem (5.2). Consider the 3D control system

ẋ = Ax+ bu (13)

satisfying the hypothesis DS1 and DS2. Let u = −kc3x1 − fs(x1,∆w,∆v)
be a saturated control with fs(x1,∆w,∆v) the multi-saturating function (9).
Then the closed-loop system (1) possesses equilibria sets Ax1

of type UDS I
and Bx1

of type UDS II if and only if k ∈ Kmax = KAx1
∩KBx1

. Moreover,
it is possible to generate a k−family of d−scroll attractors emerging from
the equilibria set Ax1

.

With the interest of showing how the proposed theory works we have
taking the numerical example given in [10], where the proposed approach
may generate 1-D n-scrolls, 2-D n×m-grid scrolls, and 3-D n×m× l-grid
scrolls chaotic attractors. Thus the example is given as follows.

Example 5.3. Consider the system

ẋ = AIx+ bu (14)

=





0 1 0
0 0 1

−0.7 −0.7 −0.7



x+





0
0
1



u.

The characteristic polynomial of the open-loop system is pAI
(t) = t3+0.7t2+

0.7t + 0.7 and by a) in lemma 3.4 we get that

a3 = 0.7 > 0,

4a21 − 12a2 = −6.44 ≤ 0,

a1a2 − a3 = −0.21 < 0.

15
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It implies that the system has a negative real eigenvalue and a pair of com-
plex conjugate eigenvalues in the form α± iβ, with α > 0. Next, by Lemma
4.3 the sum of its eigenvalues is negative due to a1 = 0.7 > 0. Therefore,
the system (14) is UDS-I.
The saturation function implemented [10] is given as follows:

fs(x1) =







7, if x1 > 1;
7x1, if |x1| ≤ 1;
−7, if x1 < −1.

(15)

From this saturated function is possible to generate the multi-saturated
function as follows:

fs(x1) =







































35, if 41 ≤ x1;
7x1 − 252, if 39 ≤ x1 < 41;
21, if 21 ≤ x1 < 39;
7x1 − 126, if 19 ≤ x1 < 21;
7, if 1 ≤ x1 < 19;
7x1, if −1 ≤ x1 < 1;
−7, if x1 < −1.

(16)

The system (14) is UDS-I in the saturated plateaus, however the system (14)
changes to UDS-II as it was mentioned previously due to saturated slope to
the following matrix AII :

AII =





0 1 1
0 0 1
6.3 −0.7 −0.7



 (17)

Due to the equilibria are situated on the x1−axis we may take c1 = c2 =
0 and c3 = 1; also with the sets Λv = {−1, 1, 19, 21, 39, 41} and Λw =
{−7, 7, 21, 35} we get µ0 = 7 and the another part of the feedback u =

16
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−kx1 − fs(x1) leaves the system (14) as follows

ẋ =



















































































































































0 1 0
0 0 1

(−0.7 − k) −0.7 −0.7



x+





0
0
35



 , if 41 ≤ x1;





0 1 0
0 0 1

(6.3 − k) −0.7 −0.7



x+





0
0

−252



 , if 39 ≤ x1 < 41;

...
...





0 1 0
0 0 1

(−0.7 − k) −0.7 −0.7



x+





0
0
7



 , if 1 ≤ x1 < 19;





0 1 0
0 0 1

(6.3 − k) −0.7 −0.7



x, if − 1 ≤ x1 < 1;





0 1 0
0 0 1

(−0.7 − k) −0.7 −0.7



x−





0
0
−7



 , if x1 < −1.

(18)

The following is the computing of the maximal UDS-I interval: For the
polynomials pAI

(t) = t3 + 0.7t2 + 0.7t + 0.7 and the polynomial p1(t) = t2

we have that

pAI
(iω) = (0.7 − 0.7ω2) + iω(0.7 − ω2),

p1(iω) = −ω2,

for which

P (ω2) = 0.7 − 0.7ω2,

Q(ω2) = 0.7 − ω2,

p(ω2) = −ω2,

q(ω2) = 0,

and then

F (ω) = ω2(0.7ω2 − 0.7),

G(ω) = (0.7− 0.7ω2)2 + ω2(0.7 − ω2)2,

H(ω) = ω2(0.7 − ω2).

17



18

it is not hard to see that K− =
{

F (
√
0.7) = −0.147

}

and K+ = {0+}.
Therefore, by theorem (4.2) and lemma (4.3) the maximal interval of UDS-I

is just described by k+max = min
{

−G(
√
0.7)

F (
√
0.7)

= 0.3
}

= 0.3 and k−min = −∞.

For the computing of the maximal UDS-II interval: For the polynomials
pAII

(t) = t3 +0.7t2 + 0.7t− 6.3 and the polynomial p1(t) = t2 we have that

pAII
(iω) = (−6.3− 0.7ω2) + iω(0.7 − ω2),

p1(iω) = −ω2,

for which

P (ω2) = −6.3− 0.7ω2,

Q(ω2) = 0.7− ω2,

p(ω2) = −ω2,

q(ω2) = 0,

and then

F (ω) = ω2(6.3 + 0.7ω2),

G(ω) = (6.3 + 0.7ω2)2 + ω2(0.7 − ω2)2,

H(ω) = ω2(0.7 − ω2).

we have that K− = {0−} and K+ =
{

F (
√
0.7) = 4.753

}

. Therefore, by
theorem (4.2) and lemma (4.3) the maximal interval of UDS-II is just de-

scribed by k+max = +∞ and k−min = max
{

−G(
√
0.7)

F (
√
0.7)

= −9.7
}

= −9.7. Then,

k ∈ Kmax = (−9.7, 0.3).
If k = 0 and x0 = (0.0569, 0.02847, 0.09492) the system (18) has multi-

scroll attractor as shown in Figure 2.
For k = 0.2 and x0 = (0.0569, 0.02847, 0.09492) the system (18) has a

multiscroll attractor as shown in Figure 3.

6 Conclusions

In this paper, we have introduced a family of multi-scroll attractors gener-
ated by means of a family of switching systems with a control comprises by
a multi-saturated signal and a feedback control with gain parameter k. We
provide necessary and sufficient conditions to preserves multi-scroll attrac-
tors. We have also introduced the concept of the maximal robust dynamics
interval for the control gain parameter k. An example was given to show
how the developed theory works.
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Figure 2: The projection of the attractor onto the planes: a) (x1, x2); b)
(x1, x3); and c) (x2, x3) for k = 0.

Figure 3: The projection of the attractor onto the planes: a) (x1, x2); b)
(x1, x3); and c) (x2, x3) for k = 0.2.
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[18] S. Yu, J. Lü, H. Leung & G. Chen, Design and implementation of n-
scroll chaotic attractors from a general jerk circuit, IEEE Transactions
on Circuits and Systems I, 52 (7) pp. 1459–1476 (2005).

22


