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Abstract 99 

Aim Although very likely to co-occur in the future, it is largely unknown how simultaneous 100 



 

increases in aridity and anthropogenic disturbances will influence the N cycle in dryland soils, the 101 

largest terrestrial biome on the planet. Climate and human impacts are changing the inputs to, and 102 

losses from, the nitrogen in terrestrial ecosystems. However, our knowledge of how the interaction 103 

between these drivers will affect the concentration of available N for plants and microorganisms as 104 

well as the dominance of N forms is still scarce and no study has yet explored these interactive 105 

effects on the N cycle at global scale.  106 

Location 224 dryland sites from all continents except Antarctica widely differing in their 107 

environmental conditions (from arid to dry-subhumid sites) and human influence (based on distance 108 

to towns and roads and population size). 109 

Methods Using a standardized field survey, we measured the plant cover, aridity, human impacts 110 

(i.e., proxies of land uses and air pollution), key biophysical variables (i.e., pH, texture and plant 111 

cover) as well as six N cycle important variables: total N, organic and inorganic N and N 112 

mineralization rates. We use structural equation modeling to assess the direct and indirect effects of 113 

aridity and human impacts together with key biophysical variables on the N cycle.  114 

Results Human impacts increased the concentration of total N, while aridity decreased it. The 115 

effects of aridity and human impacts on the N cycle were spatially disconnected, which may favor 116 

N scarcity in the most arid areas and promote N accumulation in the least arid areas. Both 117 

increasing aridity and human impacts will enhance the dominance of inorganic N forms. 118 

Main Conclusions Our findings provide evidence that human impacts will promote the 119 

accumulation of N in dryland soils worldwide, while the opposite effect is observed from increasing 120 

aridity. Interestingly, we found that these two global change drivers are spatially disconnected in 121 

drylands, favoring N losses in the most arid, and accumulation in the least arid ecosystems. Our 122 

analyses suggest that both increasing aridity and human impacts will enhance the relative 123 

dominance of inorganic N in drylands soils which may negatively impact key ecosystem functions 124 

and services at the global scale. 125 

 126 

Keywords: Aridity, Human impacts, Global change, N cycle, Mineralization, 127 

Depolymerization. 128 
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Introduction 134 



 

Human activities such as grazing, fertilization, intensive agriculture and fossil fuel combustion are 135 

changing the inputs to, and losses from, the nitrogen (N) cycle in terrestrial ecosystems globally 136 

(Vitousek et al., 1997; Cui et al., 2013). Anthropogenic N inputs have already doubled the total 137 

amount of N fixed naturally by terrestrial and aquatic ecosystems. Current annual rates of both 138 

organic and inorganic N deposition are about 124 Tg N per year (Gruber & Galloway, 2008; 139 

Schlesinger, 2009; Cornell, 2011). Human pressure on the N cycle is expected to increase during 140 

this century because of the predicted increases in global population by 36% over the next 40 years 141 

(Charles et al., 2008) and the intensification of land use required to support their demand for food 142 

(OECD-FAO 2011), which is estimated to increase by 70-100% by 2050 (World Bank, 2008). For 143 

example, human impact such as N deposition derived from fossil fuel combustion and fertilizer 144 

production is increasing the availability of N (particularly in inorganic forms) in terrestrial 145 

ecosystems (Cui et al., 2013; Gruber & Galloway, 2008; Schlesinger, 2009). 146 

 Paralleling the increase of N inputs derived from human activities is an increase in aridity, 147 

predicted to increase the total area of drylands (arid, semi-arid and dry-subhumid ecosystems) 148 

globally by 10% by the end of this century (Feng & Fu, 2013). Increasing aridity has been predicted 149 

to reduce soil N availability in drylands globally and to reduce the pools of organic N in these 150 

ecosystems (Schlesinger et al., 1990; Delgado-Baquerizo et al., 2013). These changes are predicted 151 

to exacerbate processes leading to land degradation and desertification in drylands, which are 152 

estimated to affect more than 250 million people, mostly living in developing countries (Reynolds 153 

et al., 2007).  154 

Human (i.e., air pollution and changes in land use) and climate change impacts are key 155 

drivers of ongoing global environmental change (Gruber & Galloway, 2008; Schlesinger, 2009; 156 

Canfield et al., 2010; Liu et al., 2010; Bai et al., 2013), and are interrelated in complex ways. These 157 

global change drivers may act in opposition, or interact to accelerate their effects on natural 158 

communities. . The combined impacts derived from human activities and climate change may create 159 

a more arid environment that is also characterized by reduced biological control of the N cycle (as 160 

explained in Schlesinger et al., 1990). For instance, direct anthropogenic-driven disturbances (e.g. 161 

overgrazing) and increases in aridity may have negative impacts on plant growth in drylands 162 

(Gruber & Galloway, 2008; Delgado-Baquerizo et al., 2013), thereby reducing inputs of organic N 163 

in these ecosystems. The human impacts of N cycle have been largely studies at local scale. For 164 

example, Baker et al., (2001) concluded that in Phoenix, the urban and agricultural components of 165 

the ecosystem were an order of magnitude higher than inputs to the desert, increasing the amount of 166 

N  in soil and groundwater pools and promoting losses to rivers. Similarly, nutrient enrichment 167 

derived from human activities has been also observed to locally enhance N mineralization in the 168 



 

Sonora desert (Hall et al., 2011). However, little is known on how the interaction between 169 

increasing aridity and human impacts will affect the concentration of available N for plants and 170 

microorganisms as well as the dominance of N forms and no study has yet explored these 171 

interactive effects on the N cycle in global drylands.  172 

  173 

 Drylands form the largest terrestrial biome on Earth and support over 38% of its population 174 

(Reynolds et al., 2007; Schimel, 2010). Nitrogen is, after water, the most important factor limiting 175 

net primary production and organic matter decomposition in these areas (Robertson & Groffman, 176 

2007; Schlesinger & Bernhardt, 2013). The N cycle is therefore crucial for ecosystem functioning 177 

and the provision of ecosystem services in these areas (Robertson & Groffman, 2007; Schlesinger 178 

& Bernhardt, 2013; Compton et al., 2011).  Knowing how direct and indirect effects from climatic 179 

(i.e., aridity), biophysical (i.e., soil texture, pH and plant cover) and anthropogenic (i.e., human-180 

induced climate change, air pollution and land use changes) drivers jointly impact the N cycle is 181 

crucial if we are to improve our ability to predict the ecological consequences of climate change for 182 

terrestrial ecosystems (Schlesinger et al., 1990, Gruber & Galloway, 2008; Chen et al., 2013).  183 

We conducted a global mensurative study of 224 field sites from all continents except Antarctica to 184 

evaluate how aridity and human impacts, together with biotic (plant cover) and abiotic (soil texture 185 

and pH) factors, will affect total N, dissolved organic N, ammonium and nitrate concentrations, 186 

dissolved organic-to-inorganic N (DON:DIN) ratio and the potential net mineralization rate of 187 

dryland soils. These variables were selected because they are good proxies of N availability and 188 

dominance of N forms within soils (Schimel & Bennett, 2004; Delgado-Baquerizo & Gallardo, 189 

2011). We hypothesized that: i) soil total N concentration would be enhanced by human impacts 190 

(estimated indirectly using proxies) and decline with aridity (Delgado-Baquerizo et al., 2013); and 191 

ii) aridity and human impacts will negatively affect the biological control of the N cycle (e.g., 192 

reducing plant cover), resulting in an increasing dominance of inorganic N forms and processes 193 

(i.e., mineralization) in dryland soils (Schlesinger et al., 1990). 194 

 195 

Material and Methods 196 

Study area  197 

This study was restricted to dryland ecosystems, defined as regions with an aridity index (AI = 198 

precipitation/potential evapotranspiration) between 0.05 and 0.65 (UNEP 1992). Original field data 199 

were collected at 224 sites located in 16 countries from all continents except Antarctica. The sites 200 

surveyed encompass a wide variety of vegetation types typically found in drylands, including 201 

grasslands, shrublands, savannas, dry seasonal forests and open woodlands dominated by trees. 202 



 

Mean annual precipitation and temperature of the study sites ranged from 66 to 1219 mm and from 203 

-1.8 to 27.8ºC, respectively. See Maestre et al., (2012) for additional details on the study sites. 204 

Climatic, abiotic, plant and nitrogen variables measured 205 

Data collection was carried out between February 2006 and December 2010 according to a 206 

standardized sampling protocol. The cover of vascular plants at each site was measured using four 207 

30-m transects and the line-intercept method, as described in Maestre et al., (2012). The coordinates 208 

of each plot were recorded in situ with a portable Global Positioning System, and were standardized 209 

to the WGS84 ellipsoid for visualization and analyses. Aridity (1-aridity index) was estimated using 210 

data from the Worldclim global database (Hijmans et al., 2005). Soils (0-7.5 cm depth) were 211 

sampled during the dry season under the canopy of the dominant perennial plants, and in open 212 

plant-free areas (10-15 samples were sampled per site, over 2600 samples in total). After field 213 

collection, the soil samples were taken to the laboratory, where they were sieved (2 mm mesh), air-214 

dried for one month and stored in this condition until laboratory analyses. All the soil analyses in 215 

this study were carried out with air-dry samples for logistical reasons. Previous studies have shown 216 

that in drylands such as those we studied, air drying and further storage of soils does not 217 

appreciably alter the functions of interest in this study (Zornoza et al., 2006, 2009). It is also 218 

important to note that our sampled soils were collected when the soil was in this dry state. Thus, the 219 

potential bias induced by our drying treatment is expected to be minimal. 220 

Soil texture was measured in two to three composite samples per site, as preliminary analysis 221 

revealed that within-site variability was very low. One composite sample each per microsite (open 222 

areas or soil under the canopy of the dominant perennial plants) and site were analyzed for sand, 223 

clay and silt content according to Kettler et al., (2001). Soil pH was measured in all the soil samples 224 

with a pH metre, in a 1: 2.5 mass: volume soil and water suspension. We also measured multiple 225 

variables from the nitrogen (N) cycle (total N, mineralization rate, dissolved inorganic N [DIN; sum 226 

of NH4
+ and NO3

-] and DON) as described by Maestre et al., (2012). In brief, soil samples (2.5 gr of 227 

soil) were extracted with K2SO4 0.5 M in a ratio 1:5. Soil extracts were shaken in an orbital shaker 228 

at 200 rpm for 1 h at 20ºC and filtered to pass a 0.45-µm Millipore filter (Jones & Willett, 2006). 229 

The filtered extract was kept at 4ºC until colorimetric analyses. Using the indophenol blue method 230 

(Sims et al., 1995), we estimated concentrations of ammonium and nitrate (colorimetrically) and 231 

available N (after potassium persulphate digestion in an autoclave at 121ºC over 55 minutes; Sollins 232 

et al., 1999). DON was determined as the difference between available N and inorganic N (sum of 233 

ammonium and nitrate). The ratio DON:DIN was determined from these data. Regarding potential 234 

mineralization rate, air-dried soil samples were re-wetted to reach 80% of their water holding 235 

capacity and incubated in the laboratory for 14 days at 30º C (Allen et al., 1986). The potential net 236 



 

N mineralization rate was estimated as the difference between initial and final inorganic N by 237 

following Delgado-Baquerizo & Gallardo (2011). Total N was obtained using a CN analyzer (Leco 238 

CHN628 Series, LECO Corporation, St Joseph, MI, USA). The N variables used here were selected 239 

because they are good proxies of N availability and dominance of N forms within soils (Schimel & 240 

Bennett 2004; Delgado-Baquerizo & Gallardo, 2011). All of these variables were then averaged to 241 

obtain site-level estimates by using the mean values observed in bare ground and vegetated areas, 242 

weighted by their respective cover at each site.  243 

Assessing human impacts 244 

Quantitative estimates of the magnitude of human impacts in natural ecosystems at global scales are 245 

difficult to obtain due to the lack of available data and the wide range of processes affected by 246 

human activities (e.g., N deposition, grazing, soil erosion), their different spatial scales, and the 247 

interactions among them (Beelen et al., 2013). We therefore estimated such impacts indirectly by 248 

measuring four variables at each study site: average proximity (in km) to the nearest northern, 249 

southern, eastern and western paved roads from each plot, average proximity (in km) to the four 250 

nearest towns/cities from each plot, average population of the four nearest towns/cities to each plot 251 

in the last census available (number of people; Table S1), and population density of the province or 252 

region of each plot in the most recent available census (number of people·km-2; Table S1). Due to 253 

the large distances between some of our study sites and the nearest towns/cities, we considered the 254 

four closest cities to our plots, as an average value of the local human impact. Distances to nearest 255 

roads, urban centres and human population are classic proxies of human perturbation on ecosystem 256 

health and services (Schlesinger & Harley, 1992; Gill et al., 1996; Drechsel et al., 2001; Liu et al., 257 

2010; Beelen et al., 2013). We assumed that the size of the negative effects of humans on the N 258 

cycle, such N deposition and/or soil erosion, would be directly related to the distance of each site to 259 

the nearest city/town and paved road, or in densely populated areas(Drechsel et al., 2001; Gadsdon 260 

& Power, 2009; Gilbert et al., 2009; Liu et al., 2010; Beelen et al., 2013). Similarly, soil N 261 

depletion derived from land use changes have been observed to be linked to increasing local human 262 

population size (Drechsel et al., 2001; Canfield et al., 2010).  263 

As the four surrogates of human impacts considered were highly correlated, we conducted a 264 

principal component analysis (PCA) to reduce them to independent components. Before conducting 265 

the PCA, all the human impact proxies were log-transformed to normalize them. We retained the 266 

two first components from the PCA for further analyses. These had an eigenvalue higher than 1, and 267 

together explained 80.5% of the variance in the PCA. The first component of the PCA (HC1) was 268 

highly related to the average distance to the four nearest towns/cities from each plot (Pearson´s r = 269 

0.96), average distance to the nearest northern, southern, eastern and western paved roads from each 270 



 

plot (Pearson´s r = 0.76) and population density of the province of each plot in the most recent 271 

available census (Pearson´s r = 0.71). The HC1 was positively related to other indexes of human 272 

influence (Fig. S1a) and footprint (Fig. S1b). In addition, our HC1 was positively related to 273 

estimates of inorganic N deposition (Fig. S2a), and fertilizer application (Fig. S2b), and to the 274 

amount of N in livestock manure production (Fig. S2c). Similarly, our HC1 was positively related to 275 

the percentage land areas used as cropland (Fig. S3a) and to estimates of soil degradation (Fig. 276 

S4a). The second component of the PCA (HC2) was highly related to the average population size of 277 

the four nearest towns/cities during the most recent census (Pearson´s r = 0.90). This component 278 

was positively related to the previous human influence and footprint indexes (Fig. S1b). In addition, 279 

our HC2 was positively related to estimates of N in manure production (Fig. S2c), soil degradation 280 

(Fig. S4a) and infiltration of water, determined at our study sites (Fig. S4b). We acknowledge that 281 

variables such as fire frequency (Durán et al., 2009), N deposition (Ochoa-Hueso et al., 2011) 282 

and/or grazing intensity (Qiu et al., 2013) at each study site would have provided better estimates of 283 

human impacts on the N cycle. However, these data were not available for most countries, as the 284 

available historical archives do not have the resolution required to obtain such data at the spatial 285 

scale of the sampled plots. Geographic distances were obtained with Google Earth® 286 

(www.google.com/earth/index.html), while population data were gathered from official statistics of 287 

each country (see Table S1). 288 

Statistical analyses 289 

We used structural equation modeling (SEM) to determine the relative importance of human 290 

impacts (HC1 and HC2), aridity, pH, sand content, plant cover and the spatial influence (distance 291 

from equator and longitude) on the different N variables evaluated. We first established an a priori 292 

model (Fig. S5), based on the known effects and relationships among the drivers of the N cycle 293 

(Supplementary Methods S1). Total N, concentrations of ammonium, nitrate and DON, DON:DIN 294 

ratios, and pH were log-transformed to improve linearity in the relationships between the variables 295 

in our SEM models. Similarly, plant total cover and sand content were square root transformed. We 296 

found that all N metrics, sand content and HC1 showed unimodal relationships with aridity. To 297 

introduce these second-order polynomial relationships into our SEM model, we calculated the 298 

square of aridity and introduced it into our model using a composite variable (Fig. S5). Similarly, 299 

the human impact and spatial influence metrics were also included as composite variables. The use 300 

of composite variables does not alter the underlying SEM model, but collapses the effects of 301 

multiple conceptually-related variables into a single composite effect, aiding interpretation of model 302 

results (Grace, 2006). We also examined the distributions of all of our endogenous variables (those 303 

with arrows pointing to them within the a priori model structure), and tested their normality. 304 



 

Because some of the variables introduced were not normally distributed, the probability that a path 305 

coefficient differs from zero was tested using bootstrap tests (Schermelleh-Engel et al., 2003). Our 306 

a priori model structure satisfactorily fitted to our data, as suggested by non-significant χ2 values (χ2 307 

= 4.740; P = 0.315; d.o.f = 4 in all cases), non-parametric Bootstrap P = 0.302 and by values of 308 

RMSEA = 0.029 with a P = 0.569.  309 

To aid final interpretation in light of this ability of SEM, we calculated the standardized total 310 

effects (direct plus indirect effects from the structural equation model) of human impacts (HC1 and 311 

HC2), aridity, pH, sand content, plant cover and spatial influence (longitude and distance from 312 

equator) on the selected N metrics (Grace, 2006). The net influence that one variable had upon 313 

another was calculated by summing all direct and indirect pathways between two variables. All the 314 

SEM analyses were conducted using the software AMOS 20 (IBM SPSS Inc, Chicago, IL, USA). 315 

 Finally, we explored the relationship between the different N variables and human impacts 316 

(HC1 and HC2) within each of the studied dryland ecosystems: arid, semiarid and dry-subhumid. 317 

By doing this, we wanted to check what dryland ecosystems suffer the highest impact on N cycle 318 

derived from human activities. Because our data were not normal, we determined our cross-validate 319 

R2 (CV R2; percent of squared error explained by the model compared to the null model) and P-320 

values using the A3 package from R (Fortmann-Roe et al. 2013). 321 

 322 

Results 323 

Sand content, pH and total plant cover in our study ranged from 5.36 to 97.94%, 4.13 to 9.21 and 324 

2.83 to 82.88% respectively (Table S2). Similarly, for the studied N variables, total N ranged from 325 

0.01 to 0.45%, ammonium from 0.82 to 55.86 mg N kg-1 soil, nitrate from 0.00 to 92.07 mg N kg-1 326 

soil, DON from 1.24 to 43.31mg N kg-1 soil and potential mineralization rate from -2.13 to 5.01 mg 327 

N kg-1 soil day-1 (Table S2).  328 

 Aridity was directly and negatively related to soil total N whereas human impacts (HC1 and 329 

HC2) were directly positively related to the latter (Fig. 1a). Interestingly, HC1 was negatively 330 

related to aridity (Fig 1; Fig. 2), however, aridity and HC2 were unrelated (Fig. 2). Aridity and 331 

human impacts, together with sand content, were the most important factors controlling soil total N 332 

as shown by the size of their total effects (Fig. 3a). Moreover, the total (direct plus indirect) effect 333 

of distance to towns and roads (HC1) and population size (HC2) showed opposite effects on soil 334 

total N (Fig. 3a). In absolute terms, however, the impact of HC1 was higher than that of HC2, 335 

resulting in a net total positive effect of human impacts on this variable (Fig. 3a).  336 

 Increases in both aridity and human impacts were associated to decreases in the DON:DIN 337 

ratio (Figs. 1b, 2b), and increases on potential net mineralization rates (Figs. 1c, 2c). Our different 338 



 

surrogates of anthropogenic disturbances (HC1 and HC2) rendered different and opposite 339 

relationships with DON and soil nitrate, although both were associated to increasing ammonium 340 

concentrations (Fig. 3e). HC1 showed a positive relationship with the concentrations of DON and 341 

soil nitrate whereas HC2 was negatively associated with those N variables. 342 

 Dry-submid were the dryland ecosystem with the highest positive and negative relationship 343 

between HC1 and total N and HC1 and DON:DIN ratio, respectively (Fig. 4). However, the 344 

opposite effect was observed from HC1 on total N in dry-subhumid ecosystems (Fig. S6).  In 345 

addition, the dry-submid ecosystems showed the highest positive relationship between HC1 and 346 

potential mineralization and nitrate concentration (Fig. 4). Again, the opposite effect was observed 347 

from HC2 on nitrate and mineralization for dry-subhumid ecosystems (Fig. S6). 348 

 349 

Discussion 350 

Global change impacts on soil total N 351 

Although human activity should increase the N budget worldwide (Galloway et al., 2008), our 352 

results suggest that the increases in aridity forecasted for large areas of the planet will counteract 353 

such increment in total N. Of particular interest was the observed negative relationship between 354 

aridity and human impacts in our models. This is likely derived from the constraints that aridity, and 355 

hence shortage in water availability, generally impose on human activities and urban development 356 

(Whitford, 2002; Schwinning & Sala, 2004). In particular, we found a quadratic negative 357 

relationship between aridity and HC1. This result suggests that there is a current spatial disconnect 358 

between the impacts of aridity, which may favour N losses, and those of human activities, which 359 

may favor N accumulation, in different dryland regions (Liu et al., 2012). Thus, at the global scale, 360 

the driest regions will tend to become more N limited, but N enhancement due to human activities 361 

in the least arid drylands may counteract any trend towards greater N limitation. In addition, aridity 362 

and HC2 were unrelated, suggesting that increasing aridity is related to more scattered urban areas 363 

(HC1), but do not population density in general (HC2; Mainguet, 1999). We stress that the spatial 364 

distribution of our plots did not cover areas where this pattern may not hold, such as large, rapidly -365 

growing desert urban areas (e.g. Phoenix or Las Vegas in USA; Kane 2014) or semi-arid areas with 366 

intensive agricultural activities (e.g. Almería in SE Spain; Aznar-Sánchez & Galdeano-Gómez, 367 

2011). We also would like to acknowledge the limitations of the observational approach followed, 368 

however we believe that our study provide a good snapshot of the status of N cycle at a global scale, 369 

and show from an integrative point of view how interactive effects derived from aridity and human 370 

impacts can globally affect N concentrations and dominance of relative N forms.     371 

 372 



 

Inorganic N accumulation derived from global change 373 

Increasing human impacts and aridity resulted in direct and total negative impacts on the DON:DIN 374 

ratio, and a positive direct effect on potential net mineralization rates. Thus, any increase in human 375 

impacts and aridity derived from global change will lead to a greater dominance of inorganic N 376 

forms. This scenario is compatible with both the observed loss of biological control on N cycle 377 

derived from climate change suggested by Schlesinger et al., (1990) and Delgado-Baquerizo et al., 378 

(2013), and the trend to an inorganic N saturation stage predicted by models in terrestrial 379 

ecosystems as a consequence of anthropogenic N deposition (Fig. S2a; Gruber & Galloway 2008; 380 

Schlesinger, 2009; Chen et al., 2013). An increase in aridity has been suggested to result in a world 381 

with a lower net depolymerization rate (DON production) in the most arid areas, likely linked to the 382 

low precipitation and plant cover of these environments (Schlesinger et al., 1990), which would 383 

increase the dominance of inorganic N forms. This was supported by the direct negative relationship 384 

between aridity and DON:DIN found. However, this direct negative effect was counteracted by the 385 

indirect positive effects mediated through sand content and pH, both increasing the ratio DON:DIN 386 

(Fig. 1b). As a consequence of the interplay between direct negative and indirect positive effects, 387 

the total effect of aridity on the dominance of dissolved organic versus inorganic N forms was 388 

negligible (Fig. 2b). Conversely, proximity to human populations (HC1) was the most important 389 

factor controlling the DON:DIN ratio as shown by its total effect size, which was greater than for 390 

any other factors evaluated (Fig. 2b). This decrease in the DON:DIN ratio with increasing human 391 

impact may be driven by the increase of inorganic N inputs linked to human activities such as 392 

fertilizer production, accumulation of livestock wastes and fossil fuel combustion in the vicinity of 393 

our sites (Dentener et al., 2006; Cornell, 2011). An increase in inorganic N in soils may have a 394 

negative impact on the functioning and services provided by drylands worldwide. For example, 395 

Delgado-Baquerizo et al., (2013b) found that inorganic N inputs were negatively linked to 396 

microbial functional diversity and N depolymerization (production of DON), and may also reduce 397 

the organic N uptake by plants and microorganisms in these ecosystems (Warren, 2009).  398 

Shifts in the different N forms derived from human impacts 399 

The relatively strong total positive relationship between HC1 and DON concentrations may suggest 400 

that atmospheric deposition of organic N, which has rarely been considered a significant source of 401 

atmospheric N (Cornell et al., 2011), may be affecting DON concentration in dryland soils. In 402 

addition, HC1 was positively related to the concentrations of soil nitrate and ammonium, suggesting 403 

the importance of both reduced and oxidized N deposition in global drylands. Because our sites are 404 

not located in agricultural areas, the effect of highly populated towns surrounding our plots (HC2) 405 

should be related more to the use of these drylands for grazing and wood harvesting than to more 406 



 

intensive human uses. Overgrazing can lead to losses of soil organic matter and nutrients through 407 

the conversion of semiarid grasslands to arid shrublands (Schlesinger et al., 1990). However, HC2 408 

was positively related to N in manure production at the global scale (Fig. S2c). This constitutes one 409 

of the most important sources of reduced N to the atmosphere (Bouwman et al., 2011), and may 410 

explain why the observed negative effect of HC2 on DON and nitrate by intensive agriculture is not 411 

found with ammonium. Intensive land management may result in DON and nitrate leaching into 412 

streams and the groundwater, which may pollute them (Gruber & Galloway 2008; Schlesinger 413 

2009; Chen et al., 2013). However, both HC1 and HC2 were positively related to the concentration 414 

of ammonium in soil (Fig. 2e). Ammonium is one of the most common N sources associated with 415 

human activities, as intensive agriculture and livestock are significant sources (Anderson et al., 416 

2003; Clarisse et al., 2009; Canfield et al., 2010). Increases in the concentration of soil ammonium 417 

with increasing human impacts in this study suggest that at least a part of the ammonium present in 418 

dryland soils may come from human-derived activities. Overall, this increase in soil ammonium 419 

concentrations may increase the potential of N to cross ecosystem boundaries by ammonia 420 

volatilization or through ammonium conversion to nitrate followed by leaching from soil, all of 421 

which are common phenomena in drylands and may cause eutrophication and reduce water quality 422 

(Schlesinger et al., 1990; Schlesinger & Harley, 1992; Robertson & Groffman, 2007; Ravishankara 423 

et al., 2009). For example, as processes such as nitrification usually require small amounts of water 424 

(Schwinning & Sala 2004; Delgado-Baquerizo et al., 2013c), the accumulation of ammonium in the 425 

less arid drylands may quickly promote its conversion to nitrate after even small rainfall events 426 

(Schwinning & Sala, 2004). Our study supports this, as we observed an increase in the potential net 427 

nitrification rate in our soils with increasing ammonium (P < 0.001; Fig. S7). The overall 428 

dominance of inorganic forms of N resulting from increasing aridity and human impacts may 429 

enhance nitrification and denitrification rates in drylands, (e.g. releasing N2O; Schlesinger et al., 430 

2009; Canfield et al., 2010), potentially enhancing the emission of greenhouse gases from these 431 

ecosystems. 432 

 433 

Conclusions 434 

Our findings provide evidence that human impacts promote the accumulation of N in dryland soils 435 

worldwide, but that these effects are offset by increases in aridity. We also found that these two 436 

global change drivers are spatially disconnected in drylands, favoring N losses in the most arid, and 437 

accumulation in the least arid ecosystems. Our analyses indicate that both increasing aridity and 438 

human impacts linked to the intensity of anthropogenic disturbance will enhance the inorganic 439 

control of the N cycle in drylands soils. This increase in inorganic N dominance in dryland soils 440 



 

may have negative effects on key ecosystem functions (e.g. microbial functionality) and services 441 

(e.g. quality of water and air) at the global scale, and may enhance the emission of important 442 

greenhouse gases such as N2O.  443 
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Figure legends 603 

Figure 1. Effects of aridity (blue arrows), human impacts (red arrows), pH, sand content, plant 604 

cover and spatial influence (grey arrows) on: total N (a), DON:DIN ratio (b), mineralization rate (c), 605 

DON (d), NH4
+ (e) and NO3

- (f). Numbers adjacent to arrows indicative of the effect size of the 606 

relationship. Continuous and dashed arrows indicate positive and negative relationships, 607 

respectively. R2 denotes the proportion of variance explained. For graphical simplicity, factors 608 

influencing human impacts are: a. Spatial → HC1 = 0.13, Spatial → HC2 = -0.35***; b. Sand → 609 



 

HC1 = -0.05, Sand → HC2 = -0.16**; c. pH → HC1 = 0.34, pH → HC2 = -0.37**; d. Composite 610 

aridity → HC1 = -0.43***, Aridity → HC2 = 0.28**. Significance levels are as follows: *P < 0.05, 611 

** P < 0.01 and *** P < 0.001. 612 

Figure 2. Relationships between aridity (1- aridity index) and the first (a; HC1) and second (b; 613 

HC2) components of a principal component analysis from four proxies of human impacts: 614 

proximity to urban areas, paved roads, population density and population size. The fitted lines 615 

correspond to quadratic (a) and (b) linear models. Because our data were not normal, we determined 616 

our cross-validate R2 (CV R2; percent of squared error explained by the model compared to the null 617 

model) and P-values using the A3 package from R (Fortmann-Roe et al. 2013).  618 

Figure 3. Standardized total effects (direct plus indirect effects) derived from the structural equation 619 

modeling, including the effects of aridity (Aridity), percentage of sand (sand), pH, plant cover 620 

(Plant), distance from equator (DE) and longitude (LON) and human impact (HC1 and HC2) on the 621 

total N (a), DON:DIN ratio (b), potential mineralization rate (c), DON (d) NH4+ (e) and NO3- (f).  622 

Figure 4. Relationships between the HC1 component and the different N variables: total N (a), 623 

DON:DIN ratio (b), potential net mineralization (c), DON (d), ammonium (e) and nitrate (f) for 624 

each of the studied dryland ecosystems: arid (n = 53), semiarid (n = 142) and dry-subhumid (n = 625 

29).  626 
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