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Abstract: Since the reported Chua’s system, several generalizations of this system have been
presented, these approaches include new equilibria in order to obtain three or more scrolls in
the attractor. One of these generalizations requires at least the same number of saddle-foci
with local two-dimensional unstable manifolds as the desired number of scrolls. In this work, we
present the generation of a double-scroll chaotic attractor called Chua-like system. Once that an
equilibrium point has been removed from the Chua’s system and there are only two saddle-foci
of different class, i.e. the dimension of one of the local unstable manifolds is one while the other
is of dimension two. The new class is constructed based on the existence of a heteroclinic loop
by linear affine systems with two saddle-focus equilibrium points of different type. Furthermore,
the chaotic behavior of the proposed system is tested by the maximum Lyapunov exponent and
the 0− 1 chaos test.
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1. INTRODUCTION

Chaos has been an extremely studied area in the last
decades, and designing systems with chaotic behavior
is of great interest for the scientific community. One of
the most remarkable properties is that simpler nonlinear
deterministic equations can have unpredictable (chaotic)
long-term solution.

A chaotic dynamical system can be identified by the
observation of an strange attractor in the phase-space, or
by a Poincaré section in the phase space, whatever, there
are analytic criteria to show and argue chaotic behavior
in dynamical systems. These are for example; Lyapunov
exponents Wolf et al. (1985), which show the trajectories
divergence; bifurcations theory, in which can be seen how a
dynamical system pass from a regular behavior to a chaotic
one by a series of well known bifurcations, an example of
this it is shown in Lorenz (1963) where chaotic behavior
is seen through Hopf bifurcations; the 1-0 test Gottwald
and Melbourne (2009) which based on the growth rate of
the mean square displacement of a two-dimensional system
driven by a time series from the system under test, allow us
to distinguish between regular and chaotic dynamics; the
Shilnikov method Silva (1993a), which allows to prove the
existence of chaotic behavior via homoclinic or heteroclinic
loops in Smale horse-shoe shape.

Some ways to construct chaotic systems have been reported
based on piecewise linear systems and the existence of
homoclinic and heteroclinic loops Li and Chen (2009).
These piecewise linear systems are chosen in a way that the
union between eigen-spaces is guaranteed, and accordingly,
the existence of homoclinic or heteroclinic loops. In Wang
and Yang (2017) and Wu et al. (2016) a design of chaos
generator with a class of three-dimensional two-zone piece-
wise affine systems based on Shilnikov method is studied,
a theory is established to guarantee the existence of a
heteroclinic cycle connecting two saddle-focus equilibria
of the same type, specifically the saddle-focus has a
one dimensional unstable manifold and two dimensional
stable manifold. It is worth noting that the case in which
the saddle-focus equilibria are of different type is not
considered.

In the literature there are many implemented methods
to generate scroll attractors. The multi-scroll strange
attractors result from the combination of several unstable
“one spiral” trajectories by means of a switching given by
the control law. Without loss of generality, we deal with
a mechanism based on piecewise linear systems (PWL) in
R3 and a switching control law to generate PWL systems
that produce multi-scroll attractors. This class of systems
is constructed with unstable dissipative systems (UDS)
and a control law to display various multi-scroll strange
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Email:rodolfo.escalante@ipicyt.edu.mx,

eric.campos@ipicyt.edu.mx
∗∗ Facultad de Ciencias,

Universidad Autónoma de San Luis Potośı.
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by a Poincaré section in the phase space, whatever, there
are analytic criteria to show and argue chaotic behavior
in dynamical systems. These are for example; Lyapunov
exponents Wolf et al. (1985), which show the trajectories
divergence; bifurcations theory, in which can be seen how a
dynamical system pass from a regular behavior to a chaotic
one by a series of well known bifurcations, an example of
this it is shown in Lorenz (1963) where chaotic behavior
is seen through Hopf bifurcations; the 1-0 test Gottwald
and Melbourne (2009) which based on the growth rate of
the mean square displacement of a two-dimensional system
driven by a time series from the system under test, allow us
to distinguish between regular and chaotic dynamics; the
Shilnikov method Silva (1993a), which allows to prove the
existence of chaotic behavior via homoclinic or heteroclinic
loops in Smale horse-shoe shape.

Some ways to construct chaotic systems have been reported
based on piecewise linear systems and the existence of
homoclinic and heteroclinic loops Li and Chen (2009).
These piecewise linear systems are chosen in a way that the
union between eigen-spaces is guaranteed, and accordingly,
the existence of homoclinic or heteroclinic loops. In Wang
and Yang (2017) and Wu et al. (2016) a design of chaos
generator with a class of three-dimensional two-zone piece-
wise affine systems based on Shilnikov method is studied,
a theory is established to guarantee the existence of a
heteroclinic cycle connecting two saddle-focus equilibria
of the same type, specifically the saddle-focus has a
one dimensional unstable manifold and two dimensional
stable manifold. It is worth noting that the case in which
the saddle-focus equilibria are of different type is not
considered.

In the literature there are many implemented methods
to generate scroll attractors. The multi-scroll strange
attractors result from the combination of several unstable
“one spiral” trajectories by means of a switching given by
the control law. Without loss of generality, we deal with
a mechanism based on piecewise linear systems (PWL) in
R3 and a switching control law to generate PWL systems
that produce multi-scroll attractors. This class of systems
is constructed with unstable dissipative systems (UDS)
and a control law to display various multi-scroll strange

5th IFAC Conference on Analysis and Control of Chaotic Systems
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

Copyright © 2018 IFAC 172

A class of Chua-like systems with only two
saddle-foci of different type
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attractors. So the idea has been to add equilibrium points
to the Chua’s system to generate multiscroll attractos. The
inverse process is to avoid an equilibrium point of the
Chua’s system but a natural question arises about whether
it is possible to maintain a double-scroll attractor.

In this work, we present a generalized theory which is
capable of explaining different approaches to construct
double-scroll strange attractors based on the use of two
different types of saddle-focus equilibrium points (i.e. taking
into account different stability of each equilibrium point)
and step functions in R3. The piecewise linear systems
are designed in a way that the union between eigen-
spaces is guaranteed forming a heteroclinic loop having the
equilibrium points as the initial and final points.

This paper is organized as follows: In Section. 2, some
theory of piecewise linear systems and its relationship with
chaos is introduced. In Section 3, a class of systems with
two saddle-focus equilibrium points of different type which
present a heteroclinic orbit is discussed. Numerical results
of a particular system with a chaotic attractor are given.
Finally, in Section 4, some conclusions are drawn.

2. HYPERBOLIC SETS AND PIECEWISE LINEAR
SYSTEMS

Saddle equilibrium points, which connect to a stable man-
ifold WS and an unstable manifold WU , are responsible
for successive stretching and folding therefore play an
important role in generating chaos. The stretching causes
the system trajectories to exhibit sensitive dependence on
initial conditions whereas the folding creates the compli-
cated microstructure Devaney et al. (1993). The saddle
points of a chaotic system in R3 can be characterized into
two types according to its eigenvalues Λ = {λ1, λ2, λ3} ∈ C
(i) The saddle points that are stable in one of its components
but unstable and oscillatory in the other two Campos-
Cantón et al. (2010). That is, the stable component is cor-
responding to a negative real eigenvalue; i.e., Re{λ1} < 0,
Im{λ1} = 0, whereas the unstable components are related
with two complex conjugate eigenvalues; i.e., Re{λ2,3} > 0,
Im{λ2,3} �= 0. (ii) The saddle points that are stable
and oscillatory in two of its components but unstable
in the another one. That is, the dissipative components
are oscillatory: Im{λ2,3} �= 0 and Re{λ2,3} < 0, while
the unstable component corresponds to the real positive
eigenvalue Re{λ1} > 0, Im{λ1} = 0.

In general, hyperbolic chaotic dynamical systems in R3 are
related to the two types of UDS around equilibrium; for
instance, Chua’s system Matsumoto (1984) has two UDS
Type I equilibria, symmetrically distributed, and another
UDS Type II at the origin. Rössler’s system Rössler (1976)
can also be characterized through UDS Type I and Type
II, and similarly some other systems CHEN and UETA
(1999); Lorenz (1963); Campos-Cantón et al. (2008). A
characteristic of all these systems is that their scrolls are
generated from UDS Type I.

It is important emphasize that the double-scroll attractor
displayed by Chua system has three equilibrium points
and does not display a scroll around the equilibrium point
at the origin. This is because at least two saddle-focus
equilibrium points of the same class are needed with

local unstable manifolds of dimension two (the complex
conjugate roots of P(Df(x∗)) have positive real part, where
P(·) denotes the characteristic polynomial of an operator
and Df(x∗) denotes the Jacobian matrix of f evaluated at
the equilibrium pint x∗ ) and the equilibrium point at the
origin has a stable manifold of dimension two.

Consider the system with an associated vector field of the
form:

ẋ = Ax+B, (1)

where x ∈ Rn is the state vector, A ∈ Rn×n is a linear
operator and B ∈ Rn is a constant vector. The system (1)
is called a linear affine system if B �= 0 and linear system
if B = 0. If A−1 exists then the equilibrium point of the
system (1) which satisfies ẋ = 0 is given by x∗ = −A−1B.
Furthermore the roots λi with i = 1, . . . , n of the associated
polynomial of the operator A, P(A) (commonly called
eigenvalues of A) are different from zero. This implies there
is no central manifold W c

x∗ , only a stable manifold WS
x∗ ,

an unstable manifold WU
x∗ or both. In the last case the

equilibrium point x∗ is called a saddle.

A system with an associated vector field of the form
ẋ = f(x) is called piecewise linear (PWL) if f(x) is as
follows:

f(x) =




A1x+B1, if x ∈ D1;
A2x+B2, if x ∈ D2;
...

...
...

Amx+Bm, if x ∈ Dm;

(2)

where Di with i = 1, . . . ,m are hyperbolic set of a partition
of the phase space Rn. Each hyperbolic set serves as a
domain for the linear or linear affine subsystems such that⋃m

i=1 Di = Rn and
⋂m

i=1 Di = ∅. Any x∗ satisfying ẋ = 0
is called an equilibrium point.

There exist systems with chaotic attractors whose main
behavioral mechanism has been explained through the
presence of homoclinic orbits or heteroclinic loops for some
selection of parameters.

A homoclinic orbit is defined as a bounded dynamical
trajectory of the system that is doubly asymptotic to an
equilibrium point Silva (1993b). A heteroclinic orbit is
similar except that there are two distinct saddle foci being
connected, one corresponding to the forward asymptotic
time limit Silva (1993b). A heteroclinic loop is formed by
the union of two or more heteroclinic orbits Silva (1993b).

For the proposed class of systems, a combination of
two saddle-focus equilibrium points of different class are
considered. The idea behind the construction is based on
the presence of a heteroclinic loop, however the analysis of
that loop is out of the scope of this work.

3. ATTRACTORS GENERATED BY THE TWO
TYPES OF SADDLE-FOCUS EQUILIBRIUM POINTS

Consider the piecewise linear (PWL) system with an
associated vector field of the form:

ẋ =

{
A1x+B1, si s ≤ 0;
A2x+B2, si s > 0;

(3)

where x = [x1, x2, x3]
T ∈ R3 is the state vector, B1, B2 ∈

R3 are real constant vectors, s = x1 + x2 defines the
switching plane S = {x ∈ R3 : x1 + x2 = 0} and
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There exist systems with chaotic attractors whose main
behavioral mechanism has been explained through the
presence of homoclinic orbits or heteroclinic loops for some
selection of parameters.

A homoclinic orbit is defined as a bounded dynamical
trajectory of the system that is doubly asymptotic to an
equilibrium point Silva (1993b). A heteroclinic orbit is
similar except that there are two distinct saddle foci being
connected, one corresponding to the forward asymptotic
time limit Silva (1993b). A heteroclinic loop is formed by
the union of two or more heteroclinic orbits Silva (1993b).

For the proposed class of systems, a combination of
two saddle-focus equilibrium points of different class are
considered. The idea behind the construction is based on
the presence of a heteroclinic loop, however the analysis of
that loop is out of the scope of this work.
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Consider the piecewise linear (PWL) system with an
associated vector field of the form:

ẋ =

{
A1x+B1, si s ≤ 0;
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(3)

where x = [x1, x2, x3]
T ∈ R3 is the state vector, B1, B2 ∈

R3 are real constant vectors, s = x1 + x2 defines the
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A1, A2 ∈ R3×3 are linear operators whose associated
polynomials P(A1) and P(A2) present a non-zero real root
and two complex conjugate roots whose real part has the
opposite sign of the real one. The real root of P(A1) has
also the opposite sign of the real root of P(A2). Thus each
subsystem of the form ẋ = Aix + Bi has a saddle-focus
equilibrium point of different class. With an appropriate
selection of subsystems it is possible to generate a chaotic
double scroll attractor.

Fig. 1. Generation of the attractor by a PWL system.

In Figure 1 there is an illustration of the mechanism
responsible for the attractor existence. The system is
piecewise linear, so there is a subsystem assigned to each
subset of the phase space, for this case the phase space is
divided by a plane S that generates two subsets. In one
of the subsets there is a saddle-focus equilibrium point
x∗
A whose local stable manifold WS

x∗
A

is one dimensional

and its local unstable manifold WU
x∗
A
is of dimension two.

Since WU
x∗
A
is a plane not parallel to the switching plane S

any trajectory in that subset close to x∗
A will eventually

go through the switching plane in a point close to or in
S
⋂
WU

x∗
A
. In the other subset of the phase space there is

the equilibrium point x∗
B whose local stable manifold WS

x∗
B

is two dimensional and its local unstable manifold WU
x∗
B

is of dimension one. The manifold WU
x∗
B
= span{u} for a

vector u ∈ R3 and u /∈ S, furthermore WS
x∗
B
divides that

subset of the phase space in two subsets, in one of them
the unstable manifold directs the flow against S. Then any
trajectory crossing the plane S in that subset will return
to S. The orientations of the local manifolds will determine
the geometry of the attractor once the trajectories are
bounded in this oscillating process around S.

In Figure 2 three qualitative trajectories are shown. The
initial condition for the trajectories x0 ∈ WU

x∗
A
is a point

close to the equilibrium point x∗
A. The first trajectory

shown in Figure 2(a) is the case where the trajectory
goes through the point xc ∈ WU

x∗
A

⋂
S and then enters

into a region where the orbit diverges not forming an
attractor. A second case shown in Figure 2(b), is when
WU

x∗
A

⋂
cl(WS

x∗
B
) �= ∅ where cl(·) denotes the closure, the

trajectory goes through the point xc ∈ WU
x∗
A

⋂
cl(WS

x∗
B
)

and tends to x∗
B as t → ∞, thus an heteroclinic loop is

formed. In the same way cl(WU
x∗
B
)
⋂
WS

x∗
A
�= ∅ and then any

trajectory starting in WU
x∗
B

goes to x∗
A as t → ∞ which

form a second heteroclinic loop and a heteroclinic orbit

is completed. Note that if WU
x∗
A

⋂
cl(WS

x∗
B
)
⋂
S �= ∅ and

WS
x∗
A

⋂
cl(WU

x∗
B
)
⋂
S �= ∅ is guaranteed then there exists

a heteroclinic orbit. A third case is shown in Figure 2(c)
where the trajectory goes through WU

x∗
A

⋂
S and enters

into a region where the equilibrium point x∗
B repels the

trajectory against S which traps the trajectory between
the two saddle equilibrium points and generates a chaotic
attractor.

In Figure 3 the three trajectories cases aforementioned,
respectively, are presented from another perspective view
and the two-dimensional manifolds are represented as a
line that corresponds to a vector of the two-dimensional
manifold. This representation allows us to easily see the
role of the manifolds in the behavior of the system close to
the equilibria.

(a) (b)

(c)

Fig. 2. Three qualitative trajectories in the PWL sys-
tem with two different saddle focus equilibrium
points.(a)Trajectory is trapped between the two equi-
librium points. (b)Heteroclinic orbits are generated.
(c)Trajectory escapes and gets away the surface S.

The interest is to form a chaotic attractor as is depicted
in third case aforementioned. The matrix A1 has been
choosen in controllable canonical form due to its simplicity,
the matrix A2 presents an apparent more complicated form,
however, its form provide a useful location of the manifolds
and the eigenvalues for the proposed construction, once
that the matrix Ai are established and according to the
their manifolds the location of the equilibrium points are
selected based on the aforementioned idea, then the vectors
B1 and B2 are obtained by −Aix

∗ = Bi. To illustrate a
construction that exhibits this behavior as the third case
consider the particular system of the form (3) with:
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(a) (b)

(c)

Fig. 3. Three qualitative trajectories of Figure 2 seen from
another angle and where the two-dimensional mani-
folds are represented only by a line that correspond
to a vector of the two-dimensional manifold.

A1 =

[
0 1 0
0 0 1

0.313 −6.25 −0.15

]
,

A2 =

[
0.9364 0.2609 1.3045
−0.8548 −0.1524 −0.2619
−5.1564 −0.1168 −0.6840

]
,

(4)

B1 =

[
1
−1

−5.474

]
, B2 =

[−2.3306
1.0869
4.9756

]
. (5)

The roots of P(A1) are λ1 = 0.05, λ2,3 = −0.1± 2.5i and
the roots of P(A2) are λ1 = −0.1, λ2,3 = 0.1 ± 2.5i. The
resulting double-scroll attractor is shown in Figure 4. It is
worth mentioning that the double-scroll attractor generated
by our Chua-like system differentiates from other Chua-
like attractors where in order to get two scrolls, there is a
need of at least two saddle-focus equilibrium points of the
same class with local unstable manifolds of dimension two
(the complex conjugate roots of P(Df(x∗)) have positive
real part). Figure 5 shows the time series of the system,
which are a mixed underdamped and increasing oscillations
signals which are in concordance with the two types of
equilibrium points.

The basin of attraction estimated numerically is shown in
Figure 6 with blue dots. It was obtained by evaluating the
points in the grid given by −10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10
and −10 ≤ x3 ≤ 10 with an increment of ∆ = 0.1 in each
direction, a point in the grid was considered part of the
basin of attraction if ||x(1000)|| < 8.

3.1 Chaos tests

In order to verify the chaotic behavior of the attractor
the Maximum Lyapunov Exponent (MLE) was calculated
based on the algorithm proposed by Rosenstein et al. (1993).
A main trajectory along with ten additional trajectories
with an orthogonal initial separation of d0 = 10−8 were

(a) (b)

(c) (d)

Fig. 4. Attractor of the system (3) with A1, A2, B1 and B2

for the initial condition (0, 0, 0) (t = 1000s) in (a) the
space (x1, x2, x3) and its projections onto the planes:
(b) (x1, x2), (c) (x1, x3) and (d) (x2, x3).

(a)

(b)

(c)

Fig. 5. Time series of the attractor shown in Figure 4. In
(a) x1 state, (b) x2 state and (c) x3 state.

used for the calculation. The trajectories were obtained
using a fourth order Runge-Kutta with a step size of
h = 0.001. The calculated value is MLE=0.077955 and
the plot of the average separation versus the time used is
shown in Figure 7.

The test for Chaos 0-1 proposed in Gottwald and Melbourne
(2009) was also performed which allow us to distinguish
chaotic dynamics. Rather than requiring phase space recon-
struction which is necessary to apply standard Lyapunov
exponent methods to the analysis of discretely sampled
data, the test works directly with the time series and
does not involve any preprocessing of the data. The test
requires only a minimal computational effort independent
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The roots of P(A1) are λ1 = 0.05, λ2,3 = −0.1± 2.5i and
the roots of P(A2) are λ1 = −0.1, λ2,3 = 0.1 ± 2.5i. The
resulting double-scroll attractor is shown in Figure 4. It is
worth mentioning that the double-scroll attractor generated
by our Chua-like system differentiates from other Chua-
like attractors where in order to get two scrolls, there is a
need of at least two saddle-focus equilibrium points of the
same class with local unstable manifolds of dimension two
(the complex conjugate roots of P(Df(x∗)) have positive
real part). Figure 5 shows the time series of the system,
which are a mixed underdamped and increasing oscillations
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and −10 ≤ x3 ≤ 10 with an increment of ∆ = 0.1 in each
direction, a point in the grid was considered part of the
basin of attraction if ||x(1000)|| < 8.
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In order to verify the chaotic behavior of the attractor
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Fig. 5. Time series of the attractor shown in Figure 4. In
(a) x1 state, (b) x2 state and (c) x3 state.

used for the calculation. The trajectories were obtained
using a fourth order Runge-Kutta with a step size of
h = 0.001. The calculated value is MLE=0.077955 and
the plot of the average separation versus the time used is
shown in Figure 7.

The test for Chaos 0-1 proposed in Gottwald and Melbourne
(2009) was also performed which allow us to distinguish
chaotic dynamics. Rather than requiring phase space recon-
struction which is necessary to apply standard Lyapunov
exponent methods to the analysis of discretely sampled
data, the test works directly with the time series and
does not involve any preprocessing of the data. The test
requires only a minimal computational effort independent
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(a) (b)

Fig. 6. Basin of attraction estimated numerically of the
attractor in Figure 4 is marked with blue dots in the
phase space (a)x1−x2−x3 and (b) part of it at x3 = 0.

of the dimension of the underlying dynamical system under
investigation Gottwald and Melbourne, 2016.

The test requires a time series φ(n) which was conformed
by sampling every τ = 0.4 the x1 coordinate of a trajectory
of the attractor. The trajectory was obtained by Runge-
Kutta with a step size of h = 0.01. The test consists in using
the time series φ(n) to drive a proposed two dimensional
system given in Gottwald and Melbourne (2009):

p(n+ 1) = p(n) + φ(n) cos cn,
q(n+ 1) = q(n) + φ(n) sin cn,

(6)

with c ∈ (0, 2π) fixed. Then the growth rate of the mean
square displacement kc is calculated for each value of c in
a set. The median of the set of calculated kc values is K,
which distinguishes between chaotic (K = 1) and regular
motion (K = 0). For the proposed system with a double
scroll, the 1-0 test yields a result of K = 0.9554, which
gives an indication of the existence of chaos. In Figure 8
are shown the values of Kc calculated in the test.

Fig. 7. Maximum Lyapunov exponent calculation.

4. CONCLUSION

In this work the question of whether it is possible or
not to generate a chaotic double scroll attractor once an
equilibrium point is removed from Chua’s system and there
are only two saddle-foci of different class was explored. A
class of PWL system is reported as Chua-like system, the
piecewise linear approach in the construction, based on the
existence of an heteroclinic loop, allows us to explain the
qualitative behavior based on the local equilibria and the
commutation. The attractors obtained using the proposed

Fig. 8. Asymptotic growth rates Kc calculated for the
double scroll attractor systems.

construction differs from other reported approaches, in the
sense that this does not require the existence of two saddle-
focus equilibrium points of the same type, where the local
unstable manifold is of dimension two. As well as the UDS
character. Also the chaotic behavior was validated via the
Maximum Lyapunov Exponent and the 0− 1 chaos test.
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thankful to CONACYT (México) for the scholarships
granted.

REFERENCES

Campos-Cantón, E., Campos-Cantón, I., González Salas,
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TRANSACTIONS ON CIRCUITS AND SYSTEMS—I:
FUNDAMENTAL THEORY AND APPLICATIONS,
40(10), 675–682.

Wang, L. and Yang, X.S. (2017). Heteroclinic cycles in a
class of 3-dimensional piecewise affine systems. Nonlinear
Analysis: Hybrid Systems, 23, 44 – 60.

Wolf, A., SWift, J., Swinney, H., and Vastano, J. (1985).
Determining lyapunov exponents from a time series.
Physica D, 16, 285–317.

Wu, T., Wang, L., and Yang, X.S. (2016). Chaos generator
design with piecewise affine systems. Nonlinear Dynam-
ics, 84(2), 817–832. doi:10.1007/s11071-015-2529-8.

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

177


