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1. INTRODUCTION

Switched systems have been widely used in many different
areas in science. Some recent analysis have been made
regarding their stability (See Chiou et al. (2010); Ma
& Zhao (2010); Aleksandronov et al. (2011), and the
references therein). There is some interest in generating
chaotic or hyperchaotic attractors with multiple scroll with
this kind of systems. Since the work reported by Suykens &
Vandewalle (1993) about n-Double scroll from the Chua’s
system(Chua et al., 1986; Madan , 1993), there have been
many different approaches to yield multi-scroll attractors
in the last coupled decades. These approaches may be
ranged from modifying the Chua’s system by replacing the
nonlinear part with different nonlinear functions (Suykens
& Vandewalle, 1993; Suykens et al., 1997; Yalçin et al.,
2000; Tang et al. , 2001), to the use of nonsmooth nonlinear
functions such as, hysteresis (Lü et al. , 2004 A; Deng &
Lü, 2007), saturation (Lü et al., 2004 B; Sánchez-López et
al., 2010), threshold and step functions (Lü, Murali et al.,
2008; Elwakil et al., 2000; Yalçin et al., 2002; Yu et al.,
2005; Lü et al., 2003; Qiang & Xin, 2006; Xie et al., 2008;
Campos-Cantón et al., 2008, 2010).

It is known that with piecewise linear functions one can
achieve the generation of multiscroll chaotic attractors,
which are based on the location of the equilibrium points
introduced to the system along with the commutation
law or threshold that bounds the scrolls and gives a
specific direction to the flow. The multiple papers about
this topic have been presented as different ideas and
several theories have been developed to explain how to
generate multi-scroll chaotic attractors. A natural question
is the following: is there a theory that explains all these
approaches as one? For example, Yalçin et al. (2002),
reported that a 1D, 2D and 3D-grid of scrolls may be
introduced locating them around the equilibrium points
! This work received financial support from CONACYT through
project No. 181002.

in space using a step function. Lü et al. (2004 A); Deng
& Lü (2007) presented an approach using hysteresis that
enables the creation of 1D n-scrolls, 2D n×m-grid scrolls
and 3D n×m× l-grid scrolls chaotic attractors.

In this work, we present a generalized theory that is
capable of explaining different approaches as saturation,
threshold and step functions in "3. This class of systems
is constructed with unstable dissipative systems (UDS)
(Campos-Cantón et al., 2010) and a control law to display
various multi-scroll strange attractors. The multi-scroll
strange attractors result from the combination of several
unstable “one-spiral” trajectories by means of a switching
given by the control law. Without loss of generality we
focus our study to the simple jerk equation and a switch-
ing control law to generate PWL systems that produce
multiscroll attractors.

This paper is organized as follow: In Section 2, we intro-
duce the UDS theory to explain the generation of multi-
scrolls attractors, along with some examples using the
jerky equation. In Section 3 we use the UDS theory to
generate different approaches as step function, saturation
and hysteresis. In Section 4 we present a mechanism for
Brownian motion generation in terms of UDS, and in
Section 5 we draw conclusions.

2. SWITCHED SYSTEMS BASED ON UNSTABLE
DISSIPATIVE SYSTEMS

We consider the class of affine linear system given by

χ̇ = Aχ+B, (1)

where χ = [x1, . . . , xn]T ∈ "n is the state variable,
B = [β1, . . . , βn]T ∈ "n stands for a real vector, A =
[αij ] ∈ "n×n denotes a linear operator. Considering that
matrix A is not singular then the equilibrium point is
located at χ∗ = −A−1B. The dynamics of the system is
given by matrix A due to define a vector field Ax. Suppose
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2005; Lü et al., 2003; Qiang & Xin, 2006; Xie et al., 2008;
Campos-Cantón et al., 2008, 2010).

It is known that with piecewise linear functions one can
achieve the generation of multiscroll chaotic attractors,
which are based on the location of the equilibrium points
introduced to the system along with the commutation
law or threshold that bounds the scrolls and gives a
specific direction to the flow. The multiple papers about
this topic have been presented as different ideas and
several theories have been developed to explain how to
generate multi-scroll chaotic attractors. A natural question
is the following: is there a theory that explains all these
approaches as one? For example, Yalçin et al. (2002),
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al., 2010), threshold and step functions (Lü, Murali et al.,
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1. INTRODUCTION

Switched systems have been widely used in many different
areas in science. Some recent analysis have been made
regarding their stability (See Chiou et al. (2010); Ma
& Zhao (2010); Aleksandronov et al. (2011), and the
references therein). There is some interest in generating
chaotic or hyperchaotic attractors with multiple scroll with
this kind of systems. Since the work reported by Suykens &
Vandewalle (1993) about n-Double scroll from the Chua’s
system(Chua et al., 1986; Madan , 1993), there have been
many different approaches to yield multi-scroll attractors
in the last coupled decades. These approaches may be
ranged from modifying the Chua’s system by replacing the
nonlinear part with different nonlinear functions (Suykens
& Vandewalle, 1993; Suykens et al., 1997; Yalçin et al.,
2000; Tang et al. , 2001), to the use of nonsmooth nonlinear
functions such as, hysteresis (Lü et al. , 2004 A; Deng &
Lü, 2007), saturation (Lü et al., 2004 B; Sánchez-López et
al., 2010), threshold and step functions (Lü, Murali et al.,
2008; Elwakil et al., 2000; Yalçin et al., 2002; Yu et al.,
2005; Lü et al., 2003; Qiang & Xin, 2006; Xie et al., 2008;
Campos-Cantón et al., 2008, 2010).

It is known that with piecewise linear functions one can
achieve the generation of multiscroll chaotic attractors,
which are based on the location of the equilibrium points
introduced to the system along with the commutation
law or threshold that bounds the scrolls and gives a
specific direction to the flow. The multiple papers about
this topic have been presented as different ideas and
several theories have been developed to explain how to
generate multi-scroll chaotic attractors. A natural question
is the following: is there a theory that explains all these
approaches as one? For example, Yalçin et al. (2002),
reported that a 1D, 2D and 3D-grid of scrolls may be
introduced locating them around the equilibrium points
! This work received financial support from CONACYT through
project No. 181002.

in space using a step function. Lü et al. (2004 A); Deng
& Lü (2007) presented an approach using hysteresis that
enables the creation of 1D n-scrolls, 2D n×m-grid scrolls
and 3D n×m× l-grid scrolls chaotic attractors.

In this work, we present a generalized theory that is
capable of explaining different approaches as saturation,
threshold and step functions in "3. This class of systems
is constructed with unstable dissipative systems (UDS)
(Campos-Cantón et al., 2010) and a control law to display
various multi-scroll strange attractors. The multi-scroll
strange attractors result from the combination of several
unstable “one-spiral” trajectories by means of a switching
given by the control law. Without loss of generality we
focus our study to the simple jerk equation and a switch-
ing control law to generate PWL systems that produce
multiscroll attractors.

This paper is organized as follow: In Section 2, we intro-
duce the UDS theory to explain the generation of multi-
scrolls attractors, along with some examples using the
jerky equation. In Section 3 we use the UDS theory to
generate different approaches as step function, saturation
and hysteresis. In Section 4 we present a mechanism for
Brownian motion generation in terms of UDS, and in
Section 5 we draw conclusions.

2. SWITCHED SYSTEMS BASED ON UNSTABLE
DISSIPATIVE SYSTEMS

We consider the class of affine linear system given by

χ̇ = Aχ+B, (1)

where χ = [x1, . . . , xn]T ∈ "n is the state variable,
B = [β1, . . . , βn]T ∈ "n stands for a real vector, A =
[αij ] ∈ "n×n denotes a linear operator. Considering that
matrix A is not singular then the equilibrium point is
located at χ∗ = −A−1B. The dynamics of the system is
given by matrix A due to define a vector field Ax. Suppose
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strange attractors result from the combination of several
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given by the control law. Without loss of generality we
focus our study to the simple jerk equation and a switch-
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multiscroll attractors.

This paper is organized as follow: In Section 2, we intro-
duce the UDS theory to explain the generation of multi-
scrolls attractors, along with some examples using the
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generate different approaches as step function, saturation
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Brownian motion generation in terms of UDS, and in
Section 5 we draw conclusions.
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We consider the class of affine linear system given by
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where χ = [x1, . . . , xn]T ∈ "n is the state variable,
B = [β1, . . . , βn]T ∈ "n stands for a real vector, A =
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that the matrix A has j negative eigenvalues λ1, . . . ,λj and
n−j positive eigenvalues λj+1, . . . ,λn. Let {v1, . . . , vn} be
the corresponding set of eigenvectors. Then the stable and
unstable subspaces of the affine linear system (1), Es and
Eu, are the linear subspaces spanned by {v1, . . . , vj} and
{vj+1, . . . , vn}, respectively; i.e.,

Es = Span{v1, . . . , vj},
Eu = Span{vj+1, . . . , vn}.

According to the above discussion and considering real
and complex eigenvalues, it is possible to define a UDS
as follows:

Definition 1. A system given by (1) in "n and eigenvalues
λi, with i = 1, . . . , n. We said that system (1) is a UDS
if
∑n

i=1 λi < 0, and at least one λi is a positive real
eigenvalue or two λi are complex eigenvalues with positive
real part Re{λi} > 0. None of them is pure imaginary
eigenvalue.

The next proposition is important to mention in order to
realize what kinds of behaviors are possible to find in the
system given by (1).

Proposition 2. Let the system (1) be a UDS with ordered
real and complex eigenvalues set Λ = {λ1, . . . ,λn} and
Re{λ1} ≤ . . . ≤ Re{λj} < 0 < Re{λj+1} ≤ . . . ≤
Re{λn}. Then, the system has a stable manifold Es ⊂ "n

and another unstable Eu ⊂ "n with 1 ≤ j ≤ n and the
following statements are true:
(a) All initial condition χ0 ∈ "n/Es leads to an unstable
trajectory that goes to infinity.
(b) All initial condition χ0 ∈ Es leads to a stable tra-
jectory that settles down at χ∗ and the system does not
generate oscillations.
(c) The basin of attraction B is Es ⊂ "n.

Now, we consider a switching system based on the affine
linear system (1) given by

χ̇ = Aχ+B(χ),

B(χ) =






B1, if χ ∈ D1;
...

...
Bk, if χ ∈ Dk.

(2)

Where "n = ∪k
i=1Di and ∩k

i=1Di = ∅. Thus, the equilibria
of the system (2) is χ∗

i = −A−1Bi, with i = 1, . . . , k.
So the goal is to define vectors Bi which can generate a
class of dynamical systems in Rn with oscillations into an
attractor, that is, the flow Φ(χ(0)) of the system (2) is
trapped in an attractor A by defining at least two vectors
B1 and B2. This class of systems can display various multi-
scroll strange attractors as a result of the combination of
several unstable “one-spiral” trajectories by means of the
commutation of B(χ), i.e., we are interested in a vector
field which can yield multi-scroll attractors constitute by
a commuted vector, Bi with i = 1, . . . , k and k ≥ 2. Each
domain, Di ⊂ "n, contains the equilibrium χ∗

i = −A−1Bi.
According to the above discussion we can define a multi-
scroll chaotic system based on UDS as follows:

Definition 3. A system given by (2) in "n and equilibrium
points χ∗

i , with i = 1, . . . , k and k > 2. We said that
system (2) is a multi-scroll chaotic system if each χ∗

i

contains oscillations around and the flow φ(χ0) generates
an attractor A ⊂ "n.

According to the above discussion, it is possible to define
two types of UDS in "3, and two types of corresponding
equilibria, for more details see Campos-Cantón et al.
(2010, 2012).

Definition 4. Consider the system (1) in "3 with eigen-
values λi, i = 1, 2, 3 such that

∑3
i=1 λi < 0. Then the

system is said to be an UDS of type I (UDS-I) if one of its
eigenvalues is negative real and the other two are complex
conjugate with positive real part; and it is said to be of
type II (UDS-II) if one of its eigenvalues is positive real
and the other two are complex conjugate with negative
real part.

In order to illustrate our approach we consider the partic-
ular case of the linear ordinary differential equation(ODE)
written in the jerky form as d3x/dt3 + α33d2x/dt2 +
α32dx/dt + α31x + β3 = 0, representing the state space
equations of (1), where the matrix A and the vector B are
described as follows:

A =

(
0 1 0
0 0 1

−α31 −α32 −α33

)
;B =

(
0
0
β3

)
, (3)

where the coefficients α31,α32,α33,β3 ∈ " may be any
arbitrary scalars that satisfy the definition 4. The char-
acteristic polynomial of matrix A given by (3) takes the
following form:

λ3 + α33λ
2 + α32λ+ α31. (4)

For simplicity, we vary the coefficient α31 ∈ " and set the
others coefficients at α32 = 1, α33 = 1. The coefficient α31

has to assure the system will be UDS-I or UDS-II. Fig. 1
shows the location of the roots, for example the UDS’s-
II are given for α31 < 0, and the UDS’s-I for α31 > 1.
The system has a sink for 0 < α31 < 1. We are setting
α31 = 1.5 in order to assure a UDS-I, with these values
the eigenvalues result in λ1 = −1.20, λ2,3 = 0.10 ± 1.11i,
which satisfy Definition 4 for UDS-I. The parameter β3 is
governed by the following switching control law (SCL):

β3 =

{
0.9, if x1 ≥ 0.3;
0 otherwise. (5)

The equilibrium points of the system (2) using the matrix
A and vector B defined in (3) and the SCL (5) are
χ∗
1 = (0.6, 0, 0)T with B1 = (0, 0, 0.9)T and χ∗

2 at the origin
with B2 = (0, 0, 0)T .

Figure 2 a) depicts the projection of the double-scroll
attractor onto the (x1, x2) plane generated by the β3 SCL
(5) under equations (2)-(3).

Now, if we change the control signal given by SCL then
it is possible to generate an attractor with triple-scroll.
Therefore the β3 parameter is given as follows:

β3 =

{
0.9, if 0.3 ≤ x1;
0 if −0.3 < x1 < 0.3;
−0.9, if x1 ≤ −0.3.

(6)

Notice that χ∗
3 = −χ∗

1. This issue is intentionally defined
to illustrate the symmetry scrolls. Figure 2 b) shows the
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Fig. 1. The location of the roots: UDS-II for α31 < 0;
UDS-I for α31 > 1.

Fig. 2. The projection of the attractor onto the (x1, x2)
plane generated by different control signal: a) (5); b)
(6); c) (7); and d) (8), with α31 = 1.5 and initial
condition (0.9, 0, 0)T .

projection of triple-scroll attractor onto the (x1, x2) plane
generated by the β3 SCL (6) under equations (2)-(3).

So, quadruple and quintuple scroll attractors are yielded
by controlling the β3 parameter as follows:

β3 =






1.8, if 0.9 ≤ x1;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 < x1 < 0.3;
−0.9, if x1 ≤ −0.3.

(7)

β3 =






1.8, if 0.9 ≤ x1;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 < x1 < 0.3;
−0.9, if −0.9 < x1 ≤ −0.3;
−1.8, if x1 ≤ −0.9.

(8)

The β3, given by the SCL’s (7) and (8), introduces other
equilibrium points located at χ∗

4 = (1.2, 0, 0)T and χ∗
5 =

(−1.2, 0, 0)T , respectively. Figures 2 c) and 2 d) show
the projection of the quadruple-scroll and quintuple-scroll
attractors given by the β3 SCL (7) and (8), respectively.
Introducing more equilibrium points to the system, along
with the corresponding switching control law, one can
create any number of scrolls inside the 1D, 2D and 3D-
grid Campos-Cantón (2016). The direction of the scrolls
is not restricted to the state variable direction.

3. MULTI-SCROLL ATTRACTORS VIA UDS IN R3

In order to make a generalization on the UDS’s-I and
illustrate our approach, in this section we analyze some of
the systems that generate n-scrolls by different methods as
hysteresis, step function and saturation. We focus on those
that describe their experiments using the ODE written in
the jerky form (3). This type of system, was implemented
in Elwakil et al. (2000); Yalçin et al. (2002); Xie et al.
(2008); Lü et al. (2004 A); Lü et al. (2004 B); Deng
& Lü (2007), and the characteristic polynomial takes the
form (4) regardless of the method used ( hysteresisLü et al.
(2004 A), saturationLü et al. (2004 B), step functionYalçin
et al. (2002)).

Hysteresis: Lü et al. (2004 A), implemented a hysteresis
series to obtain multiscroll chaotic attractors in 1-D n-
scroll, 2-D n×m-grid scroll, and 3-D n×m× l-grid scroll.
The hysteresis series is given by equations (1), (2) and (3)
in Lü et al. (2004 A), as follows:

h(x1) =

{
0, for x1 < 1,
1, for x1 > 0, (9)

where h(x1) is the hysteresis function that is used to define
the following hysteresis series,

h(x1, p, q) =
p∑

i=1

h−i(x1) +
q∑

i=1

hi(x1), (10)

where p and q are positive integers, and hi(x1) = h(x1 −
i+1) and h−i(x1) = −hi(x1). Equation (10) can be recast
as follows:

h(x1, p, q) =






−p, for x1 < −p+ 1,

i, for

{
i− 1 < x1 < i+ 1,
i = −p+ 1, . . . , q − 1,

q, for x1 > q − 1.

(11)

Using the equation (2) but redefine the vector B as
follows B = −AΘ(χ), where Θ(χ) = (h(x1, p, q))T , it
is possible to generate multiscroll attractors based on
hysteresis series. This approach may be explained with the
UDS definition. Considering the parameters described by
the authors, matrix A in (3) takes the following values:
α31 = 0.8, α32 = 0.72, α33 = 0.6. Therefore the
eigenvalues result in λ1 = −0.85, λ2,3 = 0.12 ± 0.95i,
where Definition 4 is satisfied for UDS-I. The equilibrium
points for the 1-D n-scroll are located along the x-axis.
The corresponding switching control law is governed by
parameter β3 which takes the form described next:

β3 =

{
β3+, if

dx1
dt > 0,

β3−, if
dx1
dt < 0,

(12)
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Fig. 1. The location of the roots: UDS-II for α31 < 0;
UDS-I for α31 > 1.

Fig. 2. The projection of the attractor onto the (x1, x2)
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(6); c) (7); and d) (8), with α31 = 1.5 and initial
condition (0.9, 0, 0)T .
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The β3, given by the SCL’s (7) and (8), introduces other
equilibrium points located at χ∗

4 = (1.2, 0, 0)T and χ∗
5 =

(−1.2, 0, 0)T , respectively. Figures 2 c) and 2 d) show
the projection of the quadruple-scroll and quintuple-scroll
attractors given by the β3 SCL (7) and (8), respectively.
Introducing more equilibrium points to the system, along
with the corresponding switching control law, one can
create any number of scrolls inside the 1D, 2D and 3D-
grid Campos-Cantón (2016). The direction of the scrolls
is not restricted to the state variable direction.

3. MULTI-SCROLL ATTRACTORS VIA UDS IN R3

In order to make a generalization on the UDS’s-I and
illustrate our approach, in this section we analyze some of
the systems that generate n-scrolls by different methods as
hysteresis, step function and saturation. We focus on those
that describe their experiments using the ODE written in
the jerky form (3). This type of system, was implemented
in Elwakil et al. (2000); Yalçin et al. (2002); Xie et al.
(2008); Lü et al. (2004 A); Lü et al. (2004 B); Deng
& Lü (2007), and the characteristic polynomial takes the
form (4) regardless of the method used ( hysteresisLü et al.
(2004 A), saturationLü et al. (2004 B), step functionYalçin
et al. (2002)).

Hysteresis: Lü et al. (2004 A), implemented a hysteresis
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in Lü et al. (2004 A), as follows:
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{
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where h(x1) is the hysteresis function that is used to define
the following hysteresis series,

h(x1, p, q) =
p∑
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hi(x1), (10)

where p and q are positive integers, and hi(x1) = h(x1 −
i+1) and h−i(x1) = −hi(x1). Equation (10) can be recast
as follows:
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
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−p, for x1 < −p+ 1,

i, for
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i− 1 < x1 < i+ 1,
i = −p+ 1, . . . , q − 1,

q, for x1 > q − 1.

(11)

Using the equation (2) but redefine the vector B as
follows B = −AΘ(χ), where Θ(χ) = (h(x1, p, q))T , it
is possible to generate multiscroll attractors based on
hysteresis series. This approach may be explained with the
UDS definition. Considering the parameters described by
the authors, matrix A in (3) takes the following values:
α31 = 0.8, α32 = 0.72, α33 = 0.6. Therefore the
eigenvalues result in λ1 = −0.85, λ2,3 = 0.12 ± 0.95i,
where Definition 4 is satisfied for UDS-I. The equilibrium
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dx1
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Fig. 3. The projection of the attractor onto the (x1, x2)
plane generated by a hysteresis serie. The equilibrium
points are marked with asterisk, and the switching
surface with a dotted line.

where

β3+ =






−4, if x1 < −3;
−3, if −3 < x1 < −2,
−2, if −2 < x1 < −1,
−1, if −1 < x1 < 0,
0, if 0 < x1 < 1,
1, if 1 < x1 < 2,
2, if 2 < x1 < 3,
3, if x1 > 3,

(13)

and

β3− =






−3, if x1 < −3;
−2, if −3 < x1 < −2,
−1, if −2 < x1 < −1,
0, if −1 < x1 < 0,
1, if 0 < x1 < 1,
2, if 1 < x1 < 2,
3, if 2 < x1 < 3,
4, if x1 > 3.

(14)

From this it may be concluded that the hysteresis series
acts similarly to the switching control law described pre-
viously in (2). Equilibrium points are being introduced
and the system is forced to oscillate around them. Since
both systems are UDS-I, the orbit escapes by means of
the unstable manifold Eu until it reaches the commutation
surface and generates a change to other equilibrium point.
This may be seen in Figure 3.

Saturation: A saturation function was implemented in
Lü et al. (2004 B), this approach may generate 1-D n-
scroll, 2-D n×m-grid scroll, and 3-D n×m× l-grid scroll
chaotic attractors. The saturation function implemented
in Lü et al. (2004 B) can be described with UDS-I and
-II by means of equation (3) and a switching control law
taking the following form:

β3 =

{
7, if x1 > 1,
0, if |x1| ≤ 1,
−7, if x1 < −1.

(15)

According to the specific values described in Lü et al.
(2004 B), the matrix A in (3) takes the following values
α31 = α32 = α33 = 0.7, for |x1| > 1. The system presents
a double scroll chaotic attractor with eigenvalues λ1 =
−0.848, λ2,3 = 0.074 ± 0.905i, satisfying Definition 4 for
UDS-I. The equilibrium points are located at (±10, 0, 0)T ,
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Fig. 4. The projection onto the plane (x1, x2) of the attrac-
tors generated by a saturation serie. The equilibrium
points are marked with red dots, and the switching
surface with black lines at x1 = ±1.

this may be appreciated in Figure 4. For |x1| ≤ 1, the
matrix A in (3) takes the following values α31 = 6.3,
α32 = α33 = 0.7. Thus, A has the following eigenvalues
λ1 = 1.530, λ2,3 = −1.115±1.694i, satisfying Definition 4
for UDS-II. The equilibrium point is located at the origin
(0, 0, 0)T . Here there are three equilibrium points and the
flow of the system crosses from one to another because the
system contains UDS-I and -II. In this way it is possible
to describe all systems presented in Lü et al. (2004 B).

The mechanism of generation of the attractor presented in
Fig. 4 in terms of UDS is given as follows:

UDS =

{
type I, if x1 > 1,
type II, if |x1| ≤ 1,
type I, if x1 < −1.

(16)

Notice that the Chua’s system can be described in a
similar way that saturated functions for generation of
multiscroll attractors. Here there are some open questions,
for example about the length of the middle region that
contains the UDS-II in order to maintain the attractor,
another question is about the minimum proximity of the
equilibrium point to the commutation surface in order to
generate a scroll around it.

Step function: Yalçin et al. (2002) made an implementa-
tion of a step function from which they can generate 1D,
2D, 3D-grid scroll attractors. The step function depicted
in equations (3) and (4) in Yalçin et al. (2002), may be
interpreted with UDS-I as follows:

β3 =






0, if x1 < 0.5
1, if 0.5 ≥ x1 > 1.5
2, if 1.5 ≥ x1 > 2.5
3, if x1 ≥ 3.5.

(17)

Using the parameters described by the authors (α31 = 0.8,
α32 = α33 = 1) according to the five 1D-grid scroll
as shown in Figure 5. The eigenvalues result in λ1 =
−0.89, λ1,2 = 0.04 ± 0.94i. Here the equilibrium points
are (i, 0, 0)T with i = 0, 1, 2, 3, 4. The switching control
law is taking the same form as the system described in
Section 2. So Definition 4 is also satisfied for UDS-I.
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Fig. 5. The projection onto the plane (x1, x2) of the attrac-
tors generated by a step function. The equilibrium
points are marked with asterisk, and the switching
surface with a dotted line.

4. BROWNIAN MOTION

The mechanism described by Huerta-Cuellar et. al. (2014)
for Brownian motion generation can be described in terms
of UDS-I. The Langevin model for Brownian motion
generation is given as follows:

ẋ = y,
ẏ = −γy +Af (t).

(18)

The evolution of the flow Eq. (18) with the stochastic
term Af exhibits the characteristic properties of Brownian
motion, such as a linear growth of the mean square dis-
placement and an approximately -2 power law frequency
spectrum. In order to generate deterministic Brownian mo-
tion Huerta-Cuellar et. al. (2014) added an additional de-
gree of freedom to the phenomenological system Eq. (18),
where the fluctuating acceleration Af (t) is now replaced
by variable z defined by a third differential equation. The
proposed variable z, which acts as fluctuating acceleration,
produces a deterministic dynamical motion with a chaotic
behavior. When a particle is moving in a fluid, friction and
collisions with other particles existing in the environment
necessarily produces changes in the motion velocity and
acceleration; all these changes are considered in the jerky
equation. In this work, a UDS-I was defined as follows:

ẋ = y,
ẏ = −γy + z,

ż = −α1x− α2y − α3z + α4,
(19)

where γ,αi, i = 1, . . . , 4, are parameters. The first two
equations are derived from the Langevin Eq. (18) with
a little change: the stochastic term is replaced by the
deterministic term which is technically known as jerk. A
trajectory of deterministic Brownian motion was presented
by switching one hundred UDS-I. The parameters values
were γ = 7 × 10−5α1 = 1.5, α2 = 1.2, α3 = 0.1. The
eigenvalues result in λ1 = −0.8303, λ1,2 = 0.3652±1.2935i
that correspond to a UDS-I. Details can be seen in Huerta-
Cuellar et. al. (2014).

5. CONCLUSION

By means of the UDS-I and II definitions, one can assure
the generation of multiscroll chaotic attractors regardless
of the method used. So the UDS approach unified three

methods to yield multiscroll attractors: hysteresis, step
function and saturation, and can be extended to Brownian
motion generation. Controlling the vector B with the
switching control law it is possible to generate any number
of scrolls in whatever direction. Also, the UDS approach
has been extended to generate hyperchaotic multiscroll
attractors. The future work is about the generation of 2D
and 3D grids of families of multi-scroll attractor given by
UDS-I and II, in the same spirit that Aguirre-Hernádez et.
al. (2015) gave a family based on UDS-I.
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4. BROWNIAN MOTION

The mechanism described by Huerta-Cuellar et. al. (2014)
for Brownian motion generation can be described in terms
of UDS-I. The Langevin model for Brownian motion
generation is given as follows:

ẋ = y,
ẏ = −γy +Af (t).

(18)

The evolution of the flow Eq. (18) with the stochastic
term Af exhibits the characteristic properties of Brownian
motion, such as a linear growth of the mean square dis-
placement and an approximately -2 power law frequency
spectrum. In order to generate deterministic Brownian mo-
tion Huerta-Cuellar et. al. (2014) added an additional de-
gree of freedom to the phenomenological system Eq. (18),
where the fluctuating acceleration Af (t) is now replaced
by variable z defined by a third differential equation. The
proposed variable z, which acts as fluctuating acceleration,
produces a deterministic dynamical motion with a chaotic
behavior. When a particle is moving in a fluid, friction and
collisions with other particles existing in the environment
necessarily produces changes in the motion velocity and
acceleration; all these changes are considered in the jerky
equation. In this work, a UDS-I was defined as follows:

ẋ = y,
ẏ = −γy + z,

ż = −α1x− α2y − α3z + α4,
(19)

where γ,αi, i = 1, . . . , 4, are parameters. The first two
equations are derived from the Langevin Eq. (18) with
a little change: the stochastic term is replaced by the
deterministic term which is technically known as jerk. A
trajectory of deterministic Brownian motion was presented
by switching one hundred UDS-I. The parameters values
were γ = 7 × 10−5α1 = 1.5, α2 = 1.2, α3 = 0.1. The
eigenvalues result in λ1 = −0.8303, λ1,2 = 0.3652±1.2935i
that correspond to a UDS-I. Details can be seen in Huerta-
Cuellar et. al. (2014).

5. CONCLUSION

By means of the UDS-I and II definitions, one can assure
the generation of multiscroll chaotic attractors regardless
of the method used. So the UDS approach unified three

methods to yield multiscroll attractors: hysteresis, step
function and saturation, and can be extended to Brownian
motion generation. Controlling the vector B with the
switching control law it is possible to generate any number
of scrolls in whatever direction. Also, the UDS approach
has been extended to generate hyperchaotic multiscroll
attractors. The future work is about the generation of 2D
and 3D grids of families of multi-scroll attractor given by
UDS-I and II, in the same spirit that Aguirre-Hernádez et.
al. (2015) gave a family based on UDS-I.
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