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Abstract – This article describes anomalous changes in the diurnal behavior of the temperature measured
in the near-surface soil at the Tlamacas monitoring site, Popocatépetl. Results of the statistical analysis show
two essential changes for the temperature characteristics observed during the 2007–2009 (quiet volcano)
and 2013–2014 (active volcano) monitoring periods. Under normal conditions, the absolute minimum daily
temperature is observed at about 7:40 Local Time (LT) during sunrise for the atmosphere and, with a time
delay, at about 8:30 LT, for soil measurements. The absolute temperature maximum is observed about
15:30 LT for the atmosphere and 16:30 LT for in-soil measurements. The dispersion of the residual
temperature (24-h running trend of the temperature substituted) is 5.6 times lower for the 2013–2014 period
in comparison with the 2007–2009 period. In other words, in 2013–2014, the temperature variability became
5.6 times lower that it was in 2007–2009.

Keywords: volcano activity / temperature anomaly / thermodynamic modeling / Tlamacas hill / Popocatepetl Volcano
/ Mexico

Résumé – Régime de température anormal dans la couche de sol proche de la surface du Mont
Tlamacas et son lien avec l’activité du volcan Popocatépetl, au Mexique. Cet article décrit des
changements anormaux dans le comportement diurne de la température mesurée dans le sol proche de la
surface du site de surveillance de Tlamacas, dans la région du volcan Popocatépetl. Les résultats de l’analyse
statistique montrent 2 changements essentiels pour les caractéristiques de température observées pendant les
périodes de surveillance 2007–2009 (volcan silencieux) et 2013–2014 (volcan actif). Dans des conditions
normales, la température quotidienne minimale absolue est observée vers 7:40, heure locale (LT) au lever du
soleil pour l’atmosphère et, avec un retard temporel, vers 8:30 LT, pour les mesures du sol. La température
maximale absolue est observée vers 15:30 LT pour l’ambiance et 16:30 LT pour les mesures dans le sol. La
dispersion de la température résiduelle (la tendance sur 24 h de la température substituée) est 5,6 fois plus
faible pour la période 2013–2014 par rapport à la période 2007–2009. Autrement dit, en 2013–2014, la
variabilité de la température est devenue 5,6 fois inférieure à celle de 2007–2009.

Mots clés : activité volcanique / anomalie de température / modélisation thermodynamique / Mont Tlamacas /
Popocatepetl volcan / Mexique
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1 Introduction

Monitoring of soil gas temperature, meteorological param-
eters, radon concentration and certain other associated physical
characteristics isan importantpart ofvolcanology.Someprevious
investigations focusedon soil temperatures involcanic areas such
asStromboli, to investigate complexmagmaticprocesses (Brusca
et al., 2004; De Gregorio et al., 2007; Cigolini et al., 2009; Revil
et al., 2011). Cigolini et al. (2009) showed the results of the
combined monitoring of 222Rn concentration, atmospheric
pressure, and soil temperature sinceApril 2007 (after the eruptive
crisis of February–April 2007) until May 2008. In general, the
variation of temperature seems unremarkable, reaching maxi-
mum values in July–August and minimum values in December–
February. However, a more detailed analysis of these data is
warranted because the maximum temperature corresponds to the
minimum pressure and radon concentration. The authors explain
this phenomenon as being due to hydrothermal convection
(Cigolini et al., 2009). The origin of hydrothermal convective
flux variation in the Fossa of Vulcano (Italy) is described in the
work of Aubert (1999), Aubert and Alparone (2000) and Aubert
et al. (2008). Nick Varley and co-authors describe an explosion
activity at Volcán de Colima derived from the rapid release of
pressure and compare this process with other volcanoes, such as
Santiaguito,Guatemala (Johnson et al., 2008), Sakurajima, Japan
and Semeru, Indonesia (Iguchi et al., 2008) and Popocatépetl,
Mexico (Varley et al., 2010).

There are different classifications of eruptive activity.Oneof
these is by the volcanic explosivity index (VEI) (Hickson et al.,
2013).According to this indexmoderate eruptions correspond to
VEI 2-3 (volume of erupted tephra about 0.01 km3), although
majoreruptionscorrespond toVEI3-4 (volumeoferupted tephra
about 0.1 km3) and above (Newhall and Self, 1982). Possible
scenarios of activity at Popocatépetl could be definedas: small to
moderate-size explosions (Alatorre Ibargüengoitia, 2011) some
with ash emission; occasionally slight incandescence in the
crater observable during the nightwith a chance of the expulsion
of incandescent fragments close to the crater. Since 1994, the
volcano has had almost continuous low magnitude activity
consisting of small explosions, sometimes with ash. These
events occur with a frequency of several to tens of eruptions
observed during relatively quiet volcano phases, and up to 50–
100 eruptions occurring during a more active phase (González-
Pomposo, 2004; Arámbula-Mendoza et al., 2010). Eruptions at
Popocatépetl can be preceded by changes in seismic and
volcano-magnetic activity, chemical composition of the gases
and spring water and sometimes deformation (Martín-Del
Pozzo, 2012). A number of reports summarize activity at
Popocatépetl during December 2007–December 2009 (Report
on Popocatepetl, 2007, 2009, 2012) and June 2013–March 2014
(Report on Popocatepetl, 2015). The data as usual came from
online daily reports by the Centro Nacional de Prevención de
Desastres (CENAPRED). Moderate ash-rich explosions take
place from one in several months up to several times per day for
quiet and active phases, respectively.

Moderate eruptions can also be accompanied by ballistics,
with a frequency of such event varying from several to tens of
events per year. Major eruptive activity is not so frequent.

Our earlier studies of the radon emanation in the volcano
Popocatépetl area (Fig. 1, latitude 19.07°N, longitude
98.63°W, altitude 5465m above sea level (a.s.l.)) showed a

variety of anomalies in the radon behavior associated with the
volcano activity (Kotsarenko et al., 2012). The previous
monitoring of soil radon released at three different volcanic
sites showed nine cases of decreasing radon concentration
when approaching volcanic eruptions for a total of 23moderate
explosions. Surveys of soil radon and gamma ray spectrometry
revealed the intensive emanation of radon and high gamma
radiation in the area of Tlamacas; the levels of the radon
concentration in the Tlamacas area (latitude 19.02°N,
longitude 98.63°W, altitude 4000m a.s.l.) were 10–20 times
higher than background volcano values.

Similar radon concentration monitoring and surveys at
volcano-tectonic geological structures have been carried out in
different active volcanoes all over the world (Martín et al.,
2003; Burton et al., 2004; Hernandez et al., 2004; Londoño,
2009). The current study is devoted to the analysis of the
temperature variations measured during the radon monitoring
(June 2013–May 2014) at the Tlamacas observation site,
situated 4 km north of the volcano crater. It coincides with a
significant increase in activity of Popocatépetl since April
2012. Results of our statistical analysis reveal the thermal
anomaly in this area and we present a qualitative and
quantitative description of the observed phenomena.

2 Geological setting

Popocatépetl is a Pliocene-Quaternary stratovolcano
situated 65 km SE of Mexico City and 45 km to the west of
the city of Puebla, in the frontal part of the Trans-Mexican
Volcanic Belt (TMVB) on a basement of Paleozoic metamor-
phic and Cretaceous sedimentary rocks (Fig. 1A) (Siebe et al.,
1995a, 1996; Macías, 2005; Espinasa-Pereña and Martín-Del
Pozzo, 2006; Arana-Salinas et al., 2010; Sosa-Ceballos et al.,
2012, Padilla y Sánchez, 2017). El Popo was constructed over
the remains of a volcanic paleostructure (Sosa-Ceballos et al.,
2015) and forms the southern end of the Sierra Nevada
volcanic range. Its stratigraphic column consists of pyroclastic
deposits (sandy ash, pumice, and ash flow deposits, containing
lithic clasts of granodiorite, hornfels, arenite and other
xenoliths) erupted during the past 23 000 yr. BP (Siebe
et al., 1995b; Siebe and Macías, 2006). Mooser et al.
(1996) reported the existence of three regional units that are
differentiated by their lithology. The first corresponds to the
volcano Popocatepetl, composed of andesitic, dacitic and
rhyolitic lavas, alternating with pyroclastic materials. The
second unit corresponds to the foothills of the volcano, and is
composed of pyroclastic layers as ash and pumice, plus lahar,
fluvial and fluvio-glacial deposits. This whole set is called the
Tarango Formation. The third unit consists of a different type
of monogenetic volcanoes that are located in the SW sector of
volcano on its piedmont. These form part of the Chichinautzin
Group, where cones of scoria with extensive lava flows of
basic and intermediate composition, i.e., basalts and andesites,
are widespread.

3 Data collection and processing

The in-soil temperature measurements were carried out
using portable radon detectors SARAD Scout Plus (the
primary purpose ofwhich ismonitoring of 222Rn concentration).
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The detectors were equipped with simple sensors for tempera-
ture, air humidity, atmospheric pressure, and an accelerometer.
The devices were installed at the monitoring sites in the soil at a
depth of 30–40 cm and operated during a period of 1–2months
before replacement. Deeper installations were not possible
because of the presence of solid rock below this depth at the
majority ofmeasurement sites.The instruments operatedwith an
exposition time from 1.5 to 2 h, for earlier detector versions of
SARAD Scout (the internal memory size was limited to a series
of 1023measurement points) and from 30min to 1 h for a later
version (Scout Plus; 2047 pts).

Two statistical values, “averaged daily temperature” and
“residual temperature”, were used for subsequent analysis. The
averaged diurnal temperature was calculated as follows.
Interpolated temperature data were grouped into a matrix
N days! 24 h (the first and last segments representing
incomplete 24 h were rejected), arithmetic daily means and
their variation (RMS) were calculated. The average daily
temperature clearly showed the appearance of a temperature
anomaly during the active volcano period (since 2012)
compared with a calm one.

The residual temperature is a quantitative temperature
value that shows the difference between the maximum and
minimum temperature during the day.

4 Results

The diurnal character of the reference temperature
variation measured at a typical medium-altitude (1900m)
meteorological station Juriquilla, Querétaro, averaged for the
period of Dec 2007–Dec 2009 is presented in Figure 2a.
During the night, in the absence of solar radiation, the
temperature continuously decreased until the time of sunrise,

so that the temperature minimum is observed about 7:40 LT.
After that the temperature monotonically increased reaching
its maximum at about 15:30 LT, after which the inclination of
the Sun was such that solar radiation could no longer
compensate the cooling of both the Earth’s surface and its
atmosphere.

The character of the average temperature variation at the
Tlamacas site for the period of a relatively low activity (Dec
2007–Dec 2009, Fig. 2b) is very similar to what we observed in
the Meteorological Station of Juriquilla (Fig. 2a). The Juriquilla
Station (100°26’48.81" E, 20°42’14.87"N, Elevation 1946ma.
s.l.) is situated in tectonicallyquietQuerétaroValley andbelongs
to the Universidad Nacional Autónoma de México (Levresse
et al., 2019). There are slight differences due to the altitude of
Tlamacas (4000m. a.s.l.) and the type of temperature measure-
ments (in-soil method). When the measurements were made in
the near-surface soil at a depth of 30–40 cm, we have observed
that the soil temperature lags behind the temperature in the open
air and, therefore, the minimum and maximum of the soil
temperature occurred later, about 8:30 and 16:30, respectively.
Aswell the temperature variability inTlamacaswasmuch less in
comparison with Juriquilla (Figs. 2a and 2b).

However, since June 2013 when radon monitoring at
Popocatepetl was restarted and after the volcano had begun a
more active phase (since April 2012), the character of the
diurnal temperature variation had changed significantly. The
regular diurnal temperature anomaly at Tlamacas was
detected, as one can see in Figure 2c (see also Figs. 3 and
4). The maximum of the daily temperature occurred at about
01:00 LT and its minimum at about 14:00 LT.

As described above, the temporal difference between the
minimum and maximum daily temperature may vary by ± 1 h
for different months of observations or even several hours as
was detected during August 2013 (Fig. 3, lower graph). In this

Fig. 1. A. Schematized geological map of Mexico (Padilla y Sánchez, 2017, modified). Triangle shows Popocatepetl position, check box (small
flag) is Juriquilla geophysical station location. Color shows the main geological ages. B. Location of volcano Popocatepetl and Tlamacas
observational site (Modified from Google Earth).
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way, one can see that a qualitative change in the daily character
of the temperature variation at the Tlamacas observation site is
neither an instrumental error nor an instrument setup mistake;
the phenomena is clear and was regularly observed at all
observation periods starting from June 2013. This anomaly
was detected using different SARAD Scout detectors.

Another distinctive feature of the observed temperature
anomalies for the period-heightened activity is the reduction of
the temperature variability. The temperature variability, i.e. the
difference between the maximum and minimum temperature,
or, in terms of statistics, the amplitude of residual temperature
(Fig. 5c) and its dispersion (Fig. 5d), decreased 5.6 times when
compared with values for the quiet volcano (Figs. 5a and 5b).

5 Thermodynamic modeling

The origin of the observed temperature anomaly is still
unclear.However, using thermodynamic concepts, thedescribed
temperature behaviour can be explained by the presence of a
powerfulmechanismofheat release, dominatingover thenatural
processes of heating (solar radiation) and cooling of both the
Earth’s surfaceand the sub-surface soil layer.Belowwepresent a
thermodynamic model of the observed data within the box in
which the sensor was placed.

The one-dimensional thermal conductivity equation is used
(American Institute of Physics Handbook, 1972):

∂T
∂t

" K
∂2T
∂x2

¼ KcðxÞhðtÞ: ð1Þ

Here T is the temperature of the air within the sensor
box, t is time, x is a length coordinate (0< x< L), and K is the
temperature conductivity coefficient of the air. On the right side
of equation (1) there is a localized heat source; the functionc(x)
describes the spatial distribution of the heat source, h(t) is its
dependence on time. In addition, there were provided the
simulations within a complex three-dimensional model, but the
results were qualitatively the same as in this simplest model.

The coefficient K is equal to K= l/(rcv), where
l≈ 2.2.10"2 W/(K.m) is the thermal conductivity coefficient
of the air, r≈ 1 kg/m3 is the density of air, and cv is the heat
capacity per 1 kg (American Institute of Physics Handbook,
1972). In turn, cv= (5/2)R/m, where the universal gas constant is
R≈ 8.34 J/(K.mol) andm= 29 g/mol is themolarmass of the air.
The estimation for K results in K≈ 0.3 cm2/s; its value changes
weakly within the temperature interval 0–30 °C.

Below the thermal processes are considered within the
sensor box for lengths of several centimeters, ln∼ 2 cm,
whereas the temporal variations are of about several hours,
tn≥ 1 h≡ 3.6 · 103 s. At this scale, the temperature conduc-
tivity coefficient is large, and the inertia of the thermal
processes can be neglected: Ktn/ln

2∼ 300>> 1. Therefore,
equation (1) can be simplified:

∂2T
∂x2

þ cðxÞhðtÞ ¼ 0: ð2Þ

The following boundary conditions apply to:

T x ¼ 0; tð Þ ¼ ’1 tð Þ; T x ¼ L; tð Þ ¼ ’2 tð Þ: ð3Þ

Fig. 2. Averaged diurnal temperature in: a: Juriquilla, Querétaro, December 2007–December 2009; b: Tlamacas, December 2007–December
2009; c: Tlamacas, June 2013–March 2014. Averaged temperature Tave is drawn by solid red line, Tave ± sT (where sT is temperature dispersion
over the averaged period) are drawn with dashed black lines.
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Here ’1(t), ’2(t) are functions of time. The problem is to
reconstruct the dependence of the heat source on time h(t),
when the temperature profiles ’1(t), ’2(t) are known at each
end of the system x= 0 and x=L, equation (3), jointly with the
measured temperature within the system at x= x*:

T x ¼ x'; tð Þ ¼ ’ tð Þ: ð4Þ

Also the spatial profile of the heat source c(x) is known. It
is assumed to be localized within the system:

c xð Þ ¼ exp " x" x1
x0

! "2
 !

ð5Þ

The problem of the reconstruction can be solved
analytically in this simplest treatment. The solution of
equation (2) with the given boundary conditions (3) is:

T x; tð Þ’1 tð Þ þ ’2 tð Þ " ’1 tð Þ
L

xþ h tð Þ F Lð Þ x
L
"F xð Þ

# $
;

where F xð Þ ¼
Z x

0
c x0ð Þ x" x0ð Þdx0:

ð6Þ

Using equation (4), one obtains the following formula for
h(t):

h tð Þ ¼
’1 tð Þ þ ’2 tð Þ " ’1 tð Þð Þ x'L " ’ tð Þ

F x'ð Þ "F Lð Þ x'L
: ð7Þ

The reconstruction of the heat source has been performed
for the input data presented in Figure 6a. The temperatures at
the boundaries are the same: ’1(t)=’2(t), as presented in
Figure 2b. The temperature c(t) is measured in the centre of
the box x* = L/2 = 5 cm.

The result of the reconstruction is given in Figure 6b. The
size of the system is L = 10 cm. The heat source is localized in
the center of the system x1=L/2 = 5 cm and its size is
x0 = 1 cm. The results of the reconstruction are tolerant to the
variations of the localization point of the source x1, its shape,
and its size x0. The positive values of h(t) correspond to heat
release, whereas the negative values are due to heat
absorption. One can see that the experimental temperature
profiles can be explained by the heat release within the time
interval 21:00–13:00 and the heat absorption during the time
interval 13:00–21:00. The total heat release dominates over
the total heat absorption.

In the case of neglecting the non-stationary term ∂T/∂t, an
influence of other mechanisms of heat transfer, such as
thermal convection does not change the results, because it
leads only to an increase of the coefficient K. If the thermal
processes that release the heat occur at greater spatial scales
ln> 20 cm, then the reconstruction should be realized in the
general case of equation (1) with the term ∂T/∂t, but with
numerical methods only (Samarskii and Vabishchevich,
2007).

Fig. 3. Top: Averaged diurnal temperature for the period Jun 2013–Mar 2014. Bottom: Averaged diurnal temperature, monthly curves. Temperature
values are zero-padded (base level subtracted for a better comparison). Base level temperature for each month is presented in the legend.
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6 Discussion

According to the regularity of the diurnal temperature
variation, in the upper part of the sub-surface layer at a depth of
30–40 cm below the surface of the Earth (the temperature
sensor immersion depth) the temperature must increase with a
certain time delay, after the sunrise to a maximum at
approximately the second half of the day (16:00 local time)
and then gradually decrease to a minimum near 8:00 local time.
Our measurements have shown that this temporal distribution
corresponds to the temperature data obtained within a nearby
tectonically-passive area (Juriquilla, Queretaro) and within the
Popocatepetl area during the inactive volcanic phase (Figs. 2a
and 2b). However, for the active volcanic period, we identify a
discrepancy of this variation, whereby there is not just a simple
heating/cooling of the material due to the daily solar variation
(Fig. 2c). This discrepancy induces three aspects (Figs. 2b and
2c): (1) the displacement of the daily temperature minimum
from 8:00 to 14:00–16:00 (LT), i.e., at the time of the usual
maximum heating by the Sun; (2) substantially reducing the
daily temperature variations from 3 °C to 0.5 °C; (3) as well as a
rise of the temperature as a whole by approximately 0.75 °C.
As we know that during these periods of time (December
2007–December 2009 and June 2013–March 2014) the solar
activity (external source of soil heating) showed negligible
variation and the daily temperature was regular, we need to

seek another explication for the observed phenomenon, e.g.
internal sources. Below we discuss this problem with reference
to the papers mentioned above and others.

Paleostructure, eruption dynamics and magma mixing,
geochronology and geochemistry of El Popo have been
discussed in different works (Sosa-Ceballos et al., 2012, 2014,
2015). These studies show the possible conduit of heat transfer,
which could serve as the key to understanding the observed
temperature phenomenon. Similar studies have been realized
at Volcán de Colima (Varley and Johnson, 2005; Varley et al.,
2006, 2010; Arámbula-Mendoza et al., 2018)

There are different ways of transporting heat: conduction,
convection, radiation, and advection. Heat flow and the
geothermal gradient are the most important concepts for
understanding temperature effects in the Earth’s interior.
Geochemical evidence for a mantle origin, plus crustal
processes in volcanic rocks from Popocatepetl and surrounding
monogenetic volcanoes was described by Schaaf et al.
(2005). There are many studies concerning the geothermal
regime below volcanic areas (e.g. Varley and Johnson, 2005;
Pasquale et al., 2014; Salzera et al., 2017). The geothermal
gradient in the upper crust in those areas has been the focus of
many studies and is characterized bymaximumvalues up to 25–
30 °C/km (Dobretsov et al., 2001). Although there are different
components controlling the geothermal gradient (radiometric
and conductive in particular), the thermal evolution of planetary

Fig. 4. Temperature variation during measurements Dec 2007–Dec 2009 (a) and Jun 2013–Mar 2014 (c) and averaged diurnal variations (b, d),
respectively. Data format is dd/mm for graphs (a, c).
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crusts and lithospheres is largely governed by the rate of heat
transfer by conduction (Turcotte andSchubert, 2001; Stacey and
Davis, 2008). Whittington et al. (2009) showed that the
governing physical properties are thermal diffusivity (к) and
conductivity (k= кrCP), where r denotes density and CP
denotes specific heat capacity at constant pressure. Vosteen and
Schellschmidt (2003) and Mottaghy et al. (2008) revealed that
for crustal rocks both к and k decrease above ambient
temperature. On the other hand, most thermal models of the
Earth’s lithosphere assume constant values for k(∼ 1mm2s"1)
and/or k(∼ 3 to 5Wm"1K"1) owing to the large experimental
uncertainties associated with conventional contact methods at

high temperatures (Michaut et al., 2006). Usually, temperature
gradients within about 20m below the surface are strongly
dependent on diurnal changes in solar heating (Kearey et al.,
2005), but in active volcanic areas, heat flow (the rate of heat
energy transfer through a given surface per unit time) has an
important role in thesub-surface temperaturevariations.The rate
of heat flow is proportional to the difference in heat between two
bodies and may be expressed by:

Q ¼ A
DT
L

l; ð8Þ

where Q is a heat flow, DT is the temperature difference
between the bottom and top of the block, L is a length of the
block, A is an area of its cross section, and l is the value of
thermal conductivity.

We propose that the observed temperature variation in the
Tlamacas area is strongly related to temperature variations in
Popocatepetl’s magma chamber. The magma chamber, which
is the source of heat in the Popocatepetl zone, is located at a
depth of 5–6 km below the Earth’s surface (Sosa-Ceballos
et al., 2012, 2014, 2015). It is filled by dacite magma and has a
temperature of about 860 °C (Macías, 2005, 2007). Hildreth
(1981) showed that for magma chambers there are some
indications of a temperature gradient of the order of 200 °C/
km. This temperature gradient corresponds to a vertical heat
flux of 10–15 HFU (HFU=10"6 cal cm"2s"1 = 41.84mW/m2)
(Spera et al., 1982). This calculation does not mean that the

Fig. 5. Residual (24-h running averaged values subtracted) temperature for 2007–2009 (a) and 2013–2014 (c) and distribution functions for
residual temperature (c, d), respectively. Black lines indicate running 24-h trend. Data format is dd/mm for graphs (a, c).

Fig. 6. Experimental temperature profiles: input data (a); tempera-
tures at the boundaries: result of reconstruction (b).
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temperature gradient is equal all the way from the magma
chamber to the Tlamacas sub-surface, but it may be one of the
reasons for the increasing sub-surface temperature. Moreover,
a one-dimensional thermal conduction model simulates the
repetitive intrusion of basalt sills into the deeper parts of the
crust (Annen and Sparks, 2002). So we propose that the above-
mentioned process, which takes part at the magma chamber
boundary, has a periodic change of intensity and direction, i.e.
the increasing/decreasing of temperature. Periods of magmatic
intrusion create reverse geothermal gradients and thermal
anomalies in the crust. Karlstrom and Richards (2011),
describing the evolution of large magma chambers for flood
basalt eruptions, simulated the evolution of melt within and
elastic deviatoric stresses surrounding a deep magma chamber
(Karlstrom and Richards, 2011). They assumed an idealized
temperature evolution using the equation:

T x; tð Þ ¼ T r; tð Þ " T0 þ DT
Rc

r
erf c

r " Rc

2
ffiffiffiffi
kt

p
! "

; ð9Þ

where T0 is the initial temperature of the wall rocks, DT is the
temperature change imposed by the magma chamber, Rc is
the radius and r is distance from the of the sphere,
к=0.5! 10"6m2/s (Whittington et al., 2009) is the thermal
diffusivity and t is time. Then they simulated the storage and
crystallization of this melt in a magma chamber. Cooling
simulations are performed isochorically and isobarically,
as end-member fractionation scenarios (Fowler andSpera, 2008).

Another way of heat transport is radioactivity. The
continental lithosphere contains significant amounts of
radioactive elements (U, Th, K) produce heat. In the near-
surface layers, the radiogenic heat flux component is
determined by the concentration of radioactive elements.
These elements are concentrated in magmas and are carried
into the upper crust. The radiogenic heat in the investigated
area is closely associated with high values of uranium (U – up
to 4.6 ppm) and thorium (Th – up to 14–15 ppm) in the mineral
composition of the rocks and sediments (Kotsarenko et al.,
2012). We carried out gamma ray measurements at the same
locations as the temperature determinations using the
differential gamma ray spectrometer. The cone of the volcano
complex consists of pyroclastic rocks and lava flows of
andesite-dacite composition (Schaaf et al., 2003). Their
fragments have crystals of plagioclase, hypersthene, augite,
olivine, etc. in a glassy microcrystalline matrix. The content of
uranium in these volcanic rocks is about 3.5–4 ppm, which
approximately corresponds to our data (up to 4.6 ppm).
However, our measurements revealed that the thorium content
in the Tlamacas near-surface layer reaches up to 14–15 ppm,
which is significantly higher than the average level (9–
11 ppm). So it is possible that the high level of near-surface
radioactivity is associated with the ancient volcanic activity of
Popocatepetl. Unfortunately, we did not perform gamma ray
monitoring during the study period.

From the analysis of the components of thermal energy in
the sub-surface layer of the Tlamacas site, it follows that the
observed phenomena of temperature variations during the
active and passive phases of Popocatepetl is dominated by the

heating/cooling of magma in the magma chamber. Both
heating and cooling processes have a strong relation with the
radioactive and magmatic generation of heat. During
heightened activity the temperature generation is higher due
to the heat flux from the magma. However, the influence is
apparent when considering the diurnal temperature amplitude,
which is relatively low during the active volcanic phase, not
more than 0.5 °C. Even thoughmelt generation takes place near
the mantle-crust boundary, and the magma chamber does not
generate more heat during the active volcanic phase, the whole
conduit, including fracture zones, becomes more active during
this period, and is able to transfer heat faster. Besides, an
ascending column of magma in the conduit produces heat.

On the other hand, during the inactive phase, when the
solar energy plays a dominant role in heating/cooling of the
soil, these values reach 10–12 °C, and their variation is regular:
maxima at midday and minima during the night hours.

Our model offers hypotheses for the temperature variation
in the sub-surface layer of Tlamacas hill: The main source of
the heat generation in the near-surface layer during the active
volcanic phase is often due to the heat released by the
condensation of the gas phase (water vapour and air). This is
the most common exothermic process (Diliberto, 2017), and
the heat generation depends on the heat transfer manner, which
is a complex combination of conductive and mostly
convective.

The Solar thermal energy in this period is a secondary
factor. This period is characterized by higher temperatures,
lower amplitude between diurnal minimum andmaximum, and
as a result, displacement of the regular diurnal variation.

7 Conclusions

In this work we described the unusual phenomena of
temperature anomaly variation observed in the area of
Popocatepetl. The observed anomaly is very likely related
to the activity of the volcano, because it was never observed
during the period of volcanic quiescence. The described
temperature behaviour can be explained by the presence of a
powerful mechanism of heat release, i.e. a source of input and
output of the energy within the sensor, dominating over the
processes of heating (Solar radiation) and cooling of the
Earth’s surface and the sub-surface soil layer. The heat transfer
process is a complex combination of conductive and mostly
convective process, because the partial pressure of the gas in
porous ground is high. A physical mechanism for the
temperature anomaly remains under discussion, but almost
certainly, the governing processes are complex in character and
for the interpretation more geophysical studies on the
presented phenomena (and probably laboratory experiments)
are required.
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