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In this work, we consider axially symmetric stationary electromagnetic fields in the framework of special relativity. These fields have
an angular momentum density in the reference frame at rest with respect to the axis of symmetry; their Poynting vector form closed
integral lines around the symmetry axis. In order to describe the state of motion of the electromagnetic field, two sets of observers
are introduced: the inertial set, whose members are at rest with the symmetry axis; and the noninertial set, whose members are
rotating around the symmetry axis. The rotating observers measure no Poynting vector, and they are considered as comoving
with the electromagnetic field. Using explicit calculations in the covariant 3 + 1 splitting formalism, the velocity field of the
rotating observers is determined and interpreted as that of the electromagnetic field. The considerations of the rotating
observers split in two cases, for pure fields and impure fields, respectively. Moreover, in each case, each family of rotating
observers splits in two subcases, due to regions where the electromagnetic field rotates with the speed of light. These regions are
generalizations of the light cylinders found around magnetized neutron stars. In both cases, we give the explicit expressions for
the corresponding velocity fields. Several examples of relevance in astrophysics and cosmology are presented, such as the
rotating point magnetic dipoles and a superposition of a Coulomb electric field with the field of a point magnetic dipole.

1. Introduction

The Poynting vector can be used to establish the state of
motion of the electromagnetic field, for example, consider a
charged line distribution on the x-axis, moving along this
axis, while an observer at rest measures a Poynting vector, a
comoving observer measures none; hence, the velocity of
the comoving observer can be identified with the velocity of
the electromagnetic field. Since the electromagnetic field is
a distributed object, a full family of observers measuring no
Poynting vector is required to fully characterize the electro-
magnetic field’s motion.

In relativity, a reference frame is an idealization of an
observer equipped with some measuring devices in some

motion state; consequently, a set of reference frames is
described by a time-like congruence, the world lines of a fam-
ily of observers. In its turn, this congruence is described by a
family of unit time-like vectors, the observers’ 4-velocity
field, τ.

Covariant electromagnetic fields can be classified accord-
ing to their first invariant as of magnetic, electric, and null
types. The second invariant generates the pure and nonpure
classes. Except for pure null fields, it is well known that it is
always possible to find the reference frame where the Poynt-
ing vector vanishes [1]. Mitskievich showed how to find such
a reference frame; he proved that, for any nonnull pure field,
it is possible to construct a simple bivector with the electro-
magnetic field tensor; from it, or its Hodge dual-conjugate,
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a unit time-like vector can be extracted. For pure fields, this
vector is used to describe the reference frame in which there
is only an electric field or a magnetic field, while for nonpure
fields, it describes the reference frame in which both the elec-
tric and magnetic vectors are parallel to each other [2, 3]. It
follows that generically electromagnetic fields can have their
own dynamical state of motion that may entail a plethora
of physical effects and applications.

However, rotation and relativity are hard to match with
each other [4] because of some puzzling features. In astro-
physics, there exists the so-called light cylinder problem, the
lack of understanding about what happens in the region
where the magnetic field lines of a rigidly rotating pulsar
reach the speed of light [4–6]; some authors argue that the
magnetic field lines rotate with a speed greater than that of
the light beyond this cylinder [7]. The electromagnetic fields
have also opened fundamental questions in terms of rota-
tional motion [8, 9], and this theory provides a strong sup-
port to model several astrophysical objects, such as pulsars
[10, 11] and active galactic nuclei [12].

In this paper, we consider axially symmetric electromag-
netic fields in rotational motion around the symmetry axis.
They are characterized not only by the rotation of the refer-
ence frame but also by the fact that such fields have an angu-
lar momentum density in any other reference frame different
from the one comoving with the field. Indeed, this angular
momentum has been observed long ago [13]. In particular,
if the reference frame is at rest with respect to the rotation
axis, the Poynting vector of these rotational fields will be tan-
gent to the closed lines around the rotation axis. According to
Jackson [14], one can always associate an angular momen-
tum density to these vectors. An equivalent approach to
determine the angular momentum density is based on
Nöther’s theorem [15, 16].

Reference frames are introduced here by means of both a
rotational and a nonrotational time-like congruence in the
Minkowski spacetime. The velocity four-vector, τ (the
monad field), associated to them is then used to perform
the 3 + 1 splitting of any four-dimensional vector and in the
splitting of the field tensor into its corresponding electric
and magnetic fields. The explicit general covariance of the 3
+ 1 splitting formalism allows the usage of abstract represen-
tations of the tensor quantities. It is applied in special relativ-
ity when noninertial effects are evaluated without involving
any a priori assumption. Therefore, it is also a natural frame-
work in the theory of general relativity.

Hence, two families of observers will be considered
herein, namely, the inertial family, at rest with respect to
the rotation axis, and the noninertial family in rotational
motion with respect to the same axis. Observers in the rotat-
ing family measure no Poynting vector and are considered
comoving with the electromagnetic field. A causal border
known as the light surface appears whenever the electromag-
netic field becomes of the pure null type. This light surface
divides the spacetime in at least two different regions; in these
cases, the noninertial family may split into two complemen-
tary subsets, one for each region. With pure electromagnetic
fields, these subfamilies are labeled by the indexes fI, IIg,
while for nonpure fields by fA, Bg. No label is used for iner-

tial observers. The two families of observers can be conve-
niently discussed by using the theory of arbitrary reference
frames, also known as the 3 + 1 decomposition, orthogonal
splitting, and/or the old monad formalism [15, 17, 18].

The rest of the paper is organized as follows. Section 2
presents the electrodynamics in arbitrary reference frames,
the classification of electromagnetic fields in terms of its
invariants, and the propagation of electromagnetic fields
from the point of view of the electromagnetic field tensor’s
invariants. Section 3 introduces stationary electromagnetic
fields with angular momentum; they are discussed from the
point of view of the inertial observers. Section 4 deals with
pure rotating electromagnetic fields described from the point
of view of both the inertial and the comoving rotating
observers; the velocity fields of the last ones are determined
with respect to the inertial observers. Section 5 presents some
examples regarding the pure rotating fields of point magnetic
dipoles, which are generically important models of magneto-
spheres in both astrophysics and geophysics [19–23]. In Sec-
tion 6, the corresponding 4-velocity field of comoving
observers with nonpure electromagnetic fields is presented.
Section 7 shows an example of an impure field, the superpo-
sition of an electric Coulomb field, and the magnetic field of a
point dipole. Section 8 presents the conclusions. There are
also two Appendixes, one on the basic definition of the Car-
tan formalism and the theory of arbitrary reference frames
and a second one which gives the expressions of the charge
and current densities in a rotating reference frame.

Here, we use the signature ð+, − , − , − Þ and a system of
units in which c = 1 (unless explicitly shown otherwise for
convenience). Greek indices are taken to run from 0 to 3
and Latin indices from 1 to 3, and we adopt the standard con-
vention for summation over repeated indices. Furthermore,
we will indicate three vectors with bold symbols.

2. Electromagnetic Fields in Arbitrary
Reference Frames

In general, field tensors F in arbitrary reference frames are
written as 2-form:

F =
1
2
Fμνdx

μ ∧ dxν: ð1Þ

On the other hand, the electromagnetic vector potential
is written as a covector, A = AμðxÞdxμ, and the connection
between F and A is given by the relationship:

F = dA: ð2Þ

With respect to a given reference frame, the field tensor
splits into two terms:

F = E ∧ τ+∗ B ∧ τð Þ, ð3Þ

involving the electric and magnetic covectors [15]. The ∗
operation denotes the Hodge dual conjugation defined in
Equation (A.3).
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From a given electromagnetic field tensor, the corre-
sponding electric and magnetic covectors in the reference
frame represented by the monad field τ can be calculated
from the following:

E = ∗ τ∧∗Fð Þ,
B = ∗ τ ∧ Fð Þ:

ð4Þ

The Poynting vector can be written as a Hodge conjugate
as well as the following:

S = E × B
4π

=
1
4π

∗ E ∧ τ ∧ Bð Þ: ð5Þ

See (A.10).
An arbitrary vector can be decomposed into the sum of a

vector parallel to τ, the time-like component, and a vector
perpendicular to τ, which is the space-like component. For
example, as well known, the four-vector of the electric cur-
rent can be written in terms of the four-dimensional velocity
uμ and decomposed as follows:

jμ = ρuμ = ρτμ + jμ
3ð Þ
,

ρ
τð Þ
= j · τ,

jμ
3ð Þ
= bμν jν,

ð6Þ

where ρðτÞ and jμð3Þ are the charge and current densities mea-
sured in the reference frame represented by the monad field τ
, respectively, while bμν is the four-dimensional projector; b
= g − τ ⊗ τ is also used to define the three-dimensional scalar
product of the differential forms denoted by • in the follow-
ing (see Appendix A).

The electromagnetic splitting (Equation (3)), with Equa-
tion (4), is the consequence of the component form of the
Lorentz force [15]:

fL = E + v × Bð Þα = Fμν τν + vνð Þbμα: ð7Þ

Here, the three-dimensional velocity v of the charged
particle acted by the Lorentz force follows from the general
definition:

u = u
τð Þ
τ + vð Þ⇒ v = b

dx
ds

, ·
� �

, ð8Þ

where u ðτÞ = u · τ = dt/ds = ð1 − v2Þ−1/2, while dt = τμdx
μ = τ

· dx.

2.1. Classification of Electromagnetic Fields and Its
Propagation. The classification of electromagnetic fields is
based on their invariants (see [1, 3]):

I1 = −2 ∗ F∧∗Fð Þ = FμνF
μν = 2 B•B − E•Eð Þ,

I2 = 2 ∗ F ∧ Fð Þ = F∗
μνF

μν = 4E•B,
ð9Þ

where

F∗
μν =

1
2
EμνστF

στ: ð10Þ

The first invariant suggests that the fields can be classified
according to their sign in the following kinds: (1) magnetic
type if I1 > 0, (2) electric type if I1 < 0, and (3) null type if
I1 = 0. On the other hand, the second invariant allows to
introduce an additional subclassification in (a) pure if I2 = 0
and (b) nonpure if I2 ≠ 0.

Some useful identities are as follows:

FαγF
βγ − F∗

αγF
βγ
∗ =

1
2
I1δ

β
γ ,

F∗
αγF

βγ =
1
4
I2δ

β
γ :

ð11Þ

We move now to the deduction of an important result
[3]; connecting the propagation speed of the electromagnetic
field with the electromagnetic field invariants is presented.
Consider the electromagnetic energy momentum tensor as
follows:

Tμ
ν = −

1
4π

FμαFνα −
1
4
FστF

στδμν

� �
= −

1
4π

FμαFνα − Fμα
∗ F∗

να½ �,

ð12Þ

in Gaussian units. When it is contracted with an arbitrary
monad, it contains the electromagnetic energy density and
the Poynting vector in the corresponding reference frame:

Tμ
ντ

ν =
1
8π

B2 + E2� �
τν − 2 E × Bð Þν

� 	
, ð13Þ

and the squared expression is calculated using Equation (11):

Tμ
νTμλτ

ντλ =
1
8πð Þ2 B2 + E2� �2 − 4 E × Bð Þ2

h i

=
1
8πð Þ2 B2 − E2� �2 + 4 E•Bð Þ2

h i
=

1
16πð Þ2 I21 + I22

� �
:

ð14Þ

These constructions are not only scalars under coordi-
nate transformations, but they are also independent of the
choice of reference frame since the right hand side does not
depend on the monad.

Landau and Lifshitz [1] have shown that the propagation
speed of the electromagnetic field is given by the following:

v
1 + v2 =

E × B
E2 + B2 : ð15Þ
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Using Equation (15), Mitskievich has shown that the
propagation speed of electromagnetic fields satisfies the fol-
lowing:

0 ≤
vj j

1 + v2 =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

I21 + I22
4 E2 + B2ð Þ2

s
=

Ej j Bj j
E2 + B2 sin ψj j ≤ 1

2
:

ð16Þ

Hence, only null pure fields do propagate with the speed
of light. Equation (16) is valid for observers with arbitrary
motion on the background of curved spacetime; it coincides
with Equation (15) when inertial observers in flat spacetime
are considered.

2.2. Covariant Maxwell Equations. The covariant dynamical
and constitutive Maxwell equations are as follows:

δF = 4πj⇔ Fμν
;ν = −4πjμ, ð17Þ

dF = 0⇔ F αβ,γ½ �=0, ð18Þ
where δ = − ∗d ∗.

Taking into account that the divergence and curl opera-
tors in an arbitrary reference frame have the forms div V =
− ∗d ∗V −G•E and curl V = ∗ðτ ∧ dVÞ, the 3 + 1 splitted
form of Maxwell’s equations is as follows [15]:

div E = 4π ρ
τð Þ
+ 2ω•B, ð19Þ

curl B +G × B = £τE − 2EνD
ν
μdx

μ +Dα
αE

� �
+ 4π j

3ð Þ
, ð20Þ

div B = −2ω•E, ð21Þ

curl E +G × E = − £τB − 2BνD
ν
μdx

μ +Dα
αB

� �
, ð22Þ

and £τ is the Lie derivative with respect to τ [24, 25]. These
are the electromagnetic equations which should be used by
the observers in motion defined by the τ congruence. The
additional terms in Maxwell’s equations are interpreted as
the charge and current densities (both electric and magnetic
ones) of kinematic or fictitious nature, the latter by analogy
with the fictitious forces which appear in noninertial frames
[15].

When the covariant Maxwell equations are considered in
their orthogonal 3 + 1 splitting form, the following remarks
can be brought out:

(i) From Gauss’ law (Equation (19)), it follows that for a
pure magnetic field, (E = 0), an electric charge den-
sity should always exist in order to compensate the
kinematic (fictitious) charge induced by the rotation
of the magnetic field

(ii) From Ampere’s law (Equation (20)), it follows that
for a pure electric field, (B = 0), there should always
exist an electric current density to compensate the
kinematic (fictitious) current induced by the defor-

mation of the reference frame and/or the nonstatio-
narity of the electric field

(iii) For pure electric fields, the law of absence of mono-
poles (Equation (21)) requires that the electric field
should be orthogonal to the angular velocity ω.
There should be no kinematic monopole densities

(iv) On the other hand, Faraday’s induction law (Equa-
tion (22)) for pure magnetic fields requires the non-
existence of kinematic magnetic current densities

(v) In both cases, Equations (21) and (22) as originating
from the constitutive Maxwell equations will be sat-
isfied whenever the field tensor is an exact form, F
= dA, because dF = 0 and ddA ≡ 0

3. Electromagnetic Fields with
Angular Momentum

The four-potential of a stationary axially symmetric field is as
follows:

A =M r, ϑð Þdt −N r, ϑð Þdφ: ð23Þ

The corresponding electromagnetic field has the following
expression:

F = M,rθ
1ð Þ +

1
r
M,ϑθ

2ð Þ
� �

∧ θ 0ð Þ −
1

r sin ϑ
N ,rθ

1ð Þ +
1
r
N ,ϑθ

2ð Þ
� �

∧ θ 3ð Þ,

ð24Þ

and the electric and magnetic fields (Equation (4)), with
respect to an inertial reference frame represented by τ = θð0Þ,
are as follows:

E =M,rθ
1ð Þ +

1
r
M,ϑθ

2ð Þ, ð25Þ

B = −
1

r sin ϑ

1
r
N ,ϑθ

1ð Þ −N ,rθ
2ð Þ

� �
: ð26Þ

The Poynting covector, in this inertial reference frame, is
as follows:

S = −
1

4πr sin ϑ
M,rN ,r +

1
r2
M,ϑN ,ϑ

� �
θ 3ð Þ: ð27Þ

It can be seen that it points in the azimuthal direction;
hence, according to Jackson [14], the fields (Equation (23))
possess an angular momentum density.

From Maxwell’s Equation (17), the 4-current covector is
readily calculated, j = ρθð0Þ + Jθð3Þ, where the charge density
measured in the inertial reference frame is as follows:

ρ = −
1
4π

1
r2

∂
∂r

r2
∂M
∂r

� �
+

1
r2 sin ϑ

∂
∂ϑ

sin ϑ
∂M
∂ϑ

� �� �
, ð28Þ
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while the corresponding current density is as follows:

J = 1
4π

1
r sin ϑ

∂2N
∂r2

+
1
r3

∂
∂ϑ

1
sin ϑ

∂N
∂ϑ

� �" #
: ð29Þ

The corresponding expressions for a rotating reference
frame can be easily found by inserting Equations (28) and
(29) into Equation (B.4).

For the fields under consideration (Equation (23)), the
electromagnetic invariants are as follows:

I1 = 2
1

r2 sin2ϑ
N2

,r +
1
r2
N2

,ϑ

� �
− M2

,r +
1
r2
M2

,ϑ

� �� �
,

I2 =
4

r2 sin ϑ
M,ϑN ,r −M,rN ,ϑð Þ:

ð30Þ

Electromagnetic fields of many different types may be
considered according to the choices of the functions Mðr, ϑ
Þ and Nðr, ϑÞ. Pure electromagnetic rotating fields are
obtained when eitherM =MðNÞ or N =NðMÞ. The first case
corresponds to pure magnetic rotating fields, while the sec-
ond to a pure electric rotating fields, but only the first case
is considered here, since the second one is quite similar.
The cases M = 0 or N = 0 result in fields with vanishing
Poynting vector. Impure rotating fields correspond to other
choices of M and N .

4. Pure Rotating Electromagnetic Fields

We consider the special case when M =MðNðr, ϑÞÞ. In this
case, the electromagnetic field tensor is a simple bivector:

F =
dM
dN

N ,rθ
1ð Þ +

1
r
N ,ϑθ

2ð Þ
� �

∧ θ 0ð Þ −
1
ξ
θ 3ð Þ

� �

= −∗
1

r sin ϑ

1
r
N ,ϑθ

1ð Þ −N ,rθ
2ð Þ

� �
∧ θ 0ð Þ − ξθ 3ð Þ
� �� �

,

ð31Þ

where we have introduced the notation:

ξ r, ϑð Þ = dM
dN

r sin ϑ: ð32Þ

For the special case considered here, it is possible to see
from Equations (25) and (26) that in the inertial reference
frame, several electric fields,

E =
dM
dN

N ,rθ
1ð Þ +

1
r
N ,ϑθ

2ð Þ
� �

, ð33Þ

can be associated to the same magnetic field:

B = −
1

r sin ϑ

1
r
N ,ϑθ

1ð Þ −N ,rθ
2ð Þ

� �
: ð34Þ

Of course, in the alternative case, N =NðMÞ, several
magnetic fields can be associated to the same electric field.
The fields (Equation (33)) are unipolar-induced electric fields
by the rotation of the magnetic field. As it would be seen
below, the derivative dM/dN is interpreted as the angular
speed of the magnetic field.

The first electromagnetic field invariant becomes the fol-
lowing:

I1 =
2

r2 sin2ϑ
N2

,r +
1
r2
N2

,ϑ

� �
1 − ξ2
� �

: ð35Þ

For ∣ξ ∣ <1, it is of pure magnetic type, while for ∣ξ ∣ = 1, it
is of pure null type; if ∣ξ ∣ >1, it is of the pure electric type. In
this sense, ξ from Equation (32) divides Minkowski space-
time into different regions.

In the spacetime regions where ∣ξ ∣ <1, we can choose the
monad field for the vanishing Poynting observers as follows:

τI =
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p θ 0ð Þ − ξθ 3ð Þ
� �

: ð36Þ

Comparing Equation (36) with Equation (A.14), one
finds the velocity field of the comoving observers with the
electromagnetic field in the inertial reference frame given
by the following:

vI r, ϑð Þ = ξ =
dM
dN

r sin ϑ: ð37Þ

Consequently, as it was mentioned, the derivative dM/d
N may be interpreted as the angular speed of the observers
I and therefore as that of the magnetic field. It is as follows:

ΩI r, ϑð Þ = dM
dN

r, ϑð Þ: ð38Þ

The electromagnetic field tensor (Equation (31)) in terms
of the monad field (Equation (36)) is as follows:

F = −∗

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
r sin ϑ

1
r
N ,ϑθ

1ð Þ −N ,rθ
2ð Þ

� �
∧ τI

" #
: ð39Þ

In the frame (Equation (36)), the electric field vanishes
and only the magnetic field vector remains and can be
obtained from comparing Equation (39) with Equation (3):

BI = −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
r sin ϑ

1
r
N ,ϑθ

1ð Þ −N ,rθ
2ð Þ

� �
, ð40Þ

while the Poynting vector vanishes in this reference frame.
For the spacetime regions where ∣ξ ∣ >1, we can choose

the monad field for the vanishing Poynting observers as the
following:

τII =
∣ξ ∣ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p θ 0ð Þ −
1
ξ
θ 3ð Þ

� �
: ð41Þ
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Comparing Equation (41) with Equation (A.14), one can
find the velocity field of the comoving observers with the
electromagnetic field in the inertial reference frame:

vII r, ϑð Þ = 1
ξ r, ϑð Þ : ð42Þ

The electromagnetic field tensor (Equation (31)) in terms
of the monad field (Equation (41)) is as follows:

F =
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
∣ξ ∣

dM
dN

N ,rθ
1ð Þ +

1
r
N ,ϑθ

2ð Þ
� �

∧ τII : ð43Þ

In the frame represented by the monad field (Equation
(41)), the magnetic field vanishes and the surviving electric
field vector can be obtained by comparing Equation (43) with
Equation (3):

EII =
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
∣ξ ∣

dM
dN

N ,rθ
1ð Þ +

1
r
N ,ϑθ

2ð Þ
� �

, ð44Þ

and the Poynting vector vanishes in this reference frame.
The two congruences, defined by the monad fields (Equa-

tions (36) and (41)), are separated by the light surface, which
is the surface where the first electromagnetic invariant van-
ishes. On this surface, the electromagnetic field rotates with
the speed of light; the field tensor (Equation (31)) is the exte-
rior product of a null covector and a spatial covector. Conse-
quently, it is not possible to find a reference frame rotating in
synchrony with the electromagnetic field, as expected from
Mitskievich’s Equation (16).

5. Point Magnetic Dipoles in an Arbitrary
Rotation State

Rotating point magnetic dipoles are special cases of pure
electromagnetic fields. They provide common models of the
magnetospheres of planets and stars [19, 22]. In order to con-
sider them, the following function is used:

N r, ϑð Þ = k sin2ϑ
r

: ð45Þ

In the inertial reference frame at rest with the rotation
axis, the electric and magnetic covectors, the Poynting covec-
tor, the charge density, and the three-dimensional current
density, are found, inserting Equation (45) in Equations
(25), (26), (27), (28) and (29):

E = −k
dM
dN

sin2ϑ
r2

θ 1ð Þ −
2 sin ϑ cos ϑ

r2
θ 2ð Þ

� �
, ð46Þ

B = −k
2k cos ϑ

r3
θ 1ð Þ +

k sin ϑ

r3
θ 2ð Þ

� �
, ð47Þ

S = −
k2 sin ϑ

4πr5
dM
dN

� �
sin2ϑ + 4 cos2ϑ
� �

θ 3ð Þ, ð48Þ

ρ =
k

4πr2
sin2ϑ

∂
∂r

dM
dN

� �
−

1
r sin ϑ

∂
∂ϑ

sin2ϑ cos ϑ
dM
dN

� �� �
,

ð49Þ

J = 0: ð50Þ
The magnetic field corresponds to that of a point dipole

of magnitude ∣k ∣ aligned with the z-axis. But for each choice
of MðNÞ, there is a different electric field, though they differ
up to a conformal factor. The corresponding Poynting vec-
tors differ also in the same manner. As seen before, the deriv-
ative dM/dN is connected with the rotation of the
electromagnetic field (Equation (38)). The charge density
structure is now dictated by this derivative, giving rise to a
vast number of possibilities; see some examples below. The
functionMðNÞ, or its derivative, has to be chosen from phys-
ical considerations or from observations; for example, from
an observed charge density, it should be possible to recon-
struct the derivative by solving the differential Equation (49).

In this case, the first invariant becomes the following:

I1 =
2k2

r6
sin2ϑ + 4 cos2ϑ
� �

1 − ξ2
� �

, ð51Þ

with ξ given by Equation (32). Notice that on the light surface
∣ξ ∣ = 1, the first invariant vanishes. However, the electric and
magnetic fields, Equations (46) and (47), respectively, are
everywhere well defined. This light surface is the boundary
where the electric and magnetic fields have the same strength.

In the region jξj < 1, the electromagnetic field is of the
pure magnetic type; rotating observers described by the
monad field (Equation (36)) detect only a dipolar-like mag-
netic field:

BI = −k
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

q 2 cos ϑ
r3

θ 1ð Þ +
sin ϑ

r3
θ 2ð Þ

� �
: ð52Þ

In the region ∣ξ ∣ >1, the electromagnetic field is of the
pure electric type, and the rotating observers described by
the monad field (Equation (41)) detect only an electric field
given by the following:

EII = k

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
∣ξ ∣

dM
dN

sin2ϑ
r2

θ 1ð Þ −
2 sin ϑ cos ϑ

r2
θ 2ð Þ

� �
: ð53Þ

In the following sections, some illustrative examples of
rotating point magnetic dipoles are presented. They show
the rich structure of their magnetospheres and give an idea
of how different they may be. It is interesting that the charge
density shows regions of different polarities, depending on
whether the angular velocity and the magnetic moment are
parallel or antiparallel. These regions of definite sign charge
offer a safe environment for antimatter to accumulate and
in principle could be used to explain the antiprotons found
in Earth’s magnetosphere; see [26, 27]. In addition, the elec-
tromagnetic field’s rotation velocities are provided and the
light surfaces are presented for each case.
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5.1. Point Magnetic Dipoles with Rigid Rotation. To consider
a rotating point magnetic dipole in rigid rotation, we use the
following:

ΩI r, ϑð Þ = dM
dN

=Ω0 = const:, ð54Þ

which plugged in Equations (37) and (42) leads to the follow-
ing:

vI =Ω0r sin ϑ,

vII =
1

Ω0r sin ϑ
:

ð55Þ

Hence, only comoving observers I move rigidly, while
comoving observers II, outside the light cylinder, move with
a subluminal speed; see Figure 1. Thus, at most, the electro-
magnetic field reaches the speed of light on this light surface;
see Figure 2(a). These results counter the idea that the elec-
tromagnetic fields do rotate with a superluminal speed out-
side of the light cylinder; see Fendt and Ouyed [7]. Notice
that the speeds of the reference frames I and II were derived
from the very electromagnetic field tensor (Equation (31))
assuming only a dipolar magnetic field nature (Equation
(45)) and rigid rotation (Equation (54)).

The rigid dipole is not isolated as there are clouds of
charge of different signs around it. In the inertial reference
frame, this charge is as follows:

ρ = Ω0k
2πr3

3 sin2ϑ − 2
� �

, ð56Þ

which is well defined on the light cylinder and beyond it. If
the angular velocity and the dipolar moment are parallel to
each other, there are two lobular clouds of positive charge
and one toroidal cloud of negative charge, while if they are
antiparallel, the signs of the clouds become inverted.
Figure 3(a) shows some revolution profiles of constant
charge density for Ω0 = 10 and k = 1, in suitable units. These
clouds of charges are similar to that found in numerical stud-
ies of pulsar magnetospheres; see Kalapotharakos et al. [28]
and Cerutti and Beloborodov [29]. It is also a special case
of the charge density found by Hones and Bergeson [23].
Kalapotharakos et al. found numerically that the pulsar mag-
netosphere can be extended well beyond the light cylinder.

5.2. Point Magnetic Dipoles with Differential Rotation and a
Deformed Light Cylinder. As a toy model of a differentially
rotating magnetic dipole, consider the following angular
speed:

ΩI r, ϑð Þ = dM
dN

=Ω0 e
−aN r,ϑð Þ, ð57Þ

where Nðr, ϑÞ is given by Equation (45), and a and Ω0 are
constants. Here, ΩI is a positive bounded function, and no
other physical criteria will be taken into account.

Substituting Equation (57) in Equations (37) and (42)
leads to the following:

vI =Ω0 e
−ak sin2ϑ/rr sin ϑ,

vII =
1

Ω0r sin ϑ
eak sin2ϑ/r:

ð58Þ

vI < 1 is inside the light surface, which is a deformed cyl-
inder, while vII < 1 is outside it. Figure 2(b) shows a revolu-
tion profile for the light surface corresponding to vI = 1
when the values a = 1, k = 1, and Ω0 = 10, in some suitable
units, are used.

In this case, the charge density measured in the reference
frame at rest with the rotation axis is as follows:

ρ = −
kΩ0
4πr4

3ak cos4ϑ + 6r − 2akð Þ cos2ϑ − 2r − ak
� 	

e−ak sin2ϑ/r:

ð59Þ

Figure 3(b) shows some revolution profiles for surface of
constant density charge, for a = 1, k = 1, and Ω0 = 10. When
the dipolar moment and the angular velocity are antiparallel,
the signs of the charge of these surfaces become
interchanged.

5.3. Point Magnetic Dipoles with Differential Rotation and a
Light-Like Torus. Another possible choice, using the same
requirement as before, is as follows:

ΩI r, ϑð Þ = dM
dN

=
Ω0

N r, ϑð Þ2
e−aN r,ϑð Þ−2 , ð60Þ

1

0.8

0.6

V

0.4

0.3

0.2

0.2
0.1

0.1
𝜚

0

Figure 1: Speed of the vanishing Poynting vector observers for a
rigidly rotating magnetic dipole. Inside the light cylinder, ϱ < 0:1,
the electromagnetic field is of the pure magnetic type and rotates
rigidly with a subluminal speed v < 1, on the light cylinder, ϱ = 0:1,
the field is of the pure null type and rotates with the speed of light,
and outside the light cylinder, ϱ > 0:1, the electromagnetic field is
of the pure electric type and rotates differentially with a
subluminal speed. Here, ϱ is the cylindrical radial coordinate.
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whereNðrϑÞ is given by Equation (45). Substituting Equation
(60) in Equations (37) and (42) leads to the following:

vI =
Ω0r

3

k2 sin3ϑ
e−ar

2/k2 sin4ϑ,

vII =
k2 sin3ϑ
Ω0r3

eak sin2ϑ/r:

ð61Þ

vI < 1 is outside the light surface, in this case a torus-like
surface, while vII < 1 is inside it; the light surface is shown in
Figure 2(c). The field is of pure magnetic type outside this
torus and of pure electric type inside it.

In the inertial reference frame, at rest with the rotation
axis, the charge density is as follows:

ρ =
aΩ0

2πrk3 sin8ϑ
2k2 cos4ϑ − 3ar2 + 4k2

� �
cos2ϑ − ar2 − 2k2

� 	
e−ar

2/k2 sin4ϑ:

ð62Þ

Some revolution profiles of constant charge density are
shown in Figure 3(c), using a = 1, k = 1, and Ω0 = 10.

6. Nonpure Rotating Electromagnetic Fields

To find the reference frame comoving with the electromag-
netic field, one looks for the frame in which the Poynting vec-
tor vanishes, i.e., that in which the electric and magnetic

2
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0
0.1 0.2 0.3 0.4 0.5

4

z

x

(a)

–1

0

–2

2

1

0.1 0.2 0.3 0.4 0.5
z

x

(b)

–0.2

0.2

0

–0.6

0.6

–0.4

0.4

0.5 1 1.5 2
z

x

(c)

Figure 2: Revolution profiles around the vertical axis of light surfaces, v = 1, corresponding, respectively, to Equations (55), (58), and (61). On
these surfaces, both electromagnetic invariants vanish and the electromagnetic field is rotating with the speed of light in agreement with
Equation (16). Hence, two different sets of corotating observers are required on each side to describe the motion of the electromagnetic
field. (a) The light cylinder. (b) A cylinder with an equatorial bulge. (c) A light torus is displayed. The electromagnetic field is of the pure
magnetic type inside the light surfaces (a) and (b) and of the pure electric type outside of them; this situation is inverted in (c). Figures
were plotted using a = 1, k = 1, and Ω0 = 10.
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fields are parallel to each other. To achieve this goal, we intro-
duce an auxiliar 2-form; see Mitskievich [3]:

F = cos αð ÞF + sin αð Þ ∗F, ð63Þ

where αðxÞ is an arbitrary function chosen conveniently.
The original electromagnetic field tensor can be readily

obtained from the following:

F = cos αð ÞF − sin αð Þ ∗F: ð64Þ

Using the auxiliary 2-form, we construct the auxiliary
invariants:

I 1 = −2 ∗ F∧∗Fð Þ =FαβFαβ,

I2 = 2 ∗ F ∧Fð Þ =FαβFαβ
∗ ,

ð65Þ

which can be expressed in terms of the electromagnetic ones:

I 1 = cos 2αð ÞI1 + sin 2αð ÞI2,
I 2 = cos 2αð ÞI2 − sin 2αð ÞI1:

ð66Þ

1

0

–1

–0.5

0.5
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(b)
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0.2 0.3 0.4 0.5 0.6 0.70.1 0.8
z
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Figure 3: Contours of revolution surfaces around the vertical axis of constant charge density measured in the reference frame at rest with the
vertical axis, on the left for a rigid rotating magnetic dipole (Equation (56)); the cases of differential rotation are shown on the center and left,
respectively, for charge densities (Equations (59) and (62)). The green curve corresponds to ρ = −1, blue is for ρ = −10, red for ρ = +10, and
magenta for ρ = +1. These examples suggest that magnetospheres around astrophysical objects may be quite diverse. Figures were plotted
using a = 1, k = 1, and Ω0 = 10.
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The second auxiliary invariant vanishes if we choose α
function to satisfy the following:

tan 2αð Þ = I2
II
: ð67Þ

When the second invariant of a 2-form vanishes,

I 2 = 4E · B = 0, ð68Þ

one says that the 2-form is decomposable (meaning that it
can be written as a simple bivector) [30, 31].

However, the decomposition is not unique, as we can
write the 2-form in three different ways:

F =
1

E 1ð Þ
E ∧ E 1ð Þθ

0ð Þ + B 3ð Þθ
2ð Þ − B 2ð Þθ

3ð Þ
� �

−
E · B
E 1ð Þ

θ 2ð Þ ∧ θ 3ð Þ,

ð69Þ

F =
1

E 2ð Þ
E ∧ E 2ð Þθ

0ð Þ + B 1ð Þθ
3ð Þ − B 3ð Þθ

1ð Þ
� �

−
E · B
E 2ð Þ

θ 3ð Þ ∧ θ 1ð Þ,

ð70Þ

F =
1

E 3ð Þ
E ∧ E 3ð Þθ

0ð Þ − B 1ð Þθ
2ð Þ + B 2ð Þθ

1ð Þ
� �

−
E · B
E 3ð Þ

θ 1ð Þ ∧ θ 2ð Þ:

ð71Þ
Here,

E = E μð Þθ
μð Þ = ∗ θ 0ð Þ∧∗F

� �
,

B = B μð Þθ
μð Þ = ∗ θ 0ð Þ ∧F

� �
:

ð72Þ

Inserting Equation (63) in the last part of Equation (72),
they become as follows:

E = cos αð ÞE − sin αð ÞB,
B = sin αð Þ E + cos αð ÞB:

ð73Þ

Substituting Equations (25) and (26),

E = M,r cos α +
sin α

r2 sin ϑ
N ,ϑ

� �
θ 1ð Þ +

1
r

M,ϑ cos α −
sin α

sin ϑ
N ,r

� �
θ 2ð Þ,

B = M,r sin α −
cos α
r2 sin ϑ

N ,ϑ
� �

θ 1ð Þ +
1
r

M,ϑ sin α +
cos α
sin ϑ

N ,r
� �

θ 2ð Þ:

ð74Þ

Due to the vanishing of Equation (68), and the fact that
Eð3Þ = Bð3Þ = 0, both Equations (69) and (70) coincide:

F = E ∧ θ 0ð Þ −
B 2ð Þ
E 1ð Þ

θ 3ð Þ
 !

= E ∧ θ 0ð Þ +
B 1ð Þ
E 2ð Þ

θ 3ð Þ
 !

: ð75Þ

Since

I 2 = 4E · B = 4 E 1ð ÞB 1ð Þ + E 2ð ÞB 2ð Þ
� �

= 0⇒
B 1ð Þ
E 2ð Þ

= −
B 2ð Þ
E 1ð Þ

:

ð76Þ

Now, the auxiliary 2-form F, Equation (75), is a simple
bivector. Proceeding in the same way like for the pure elec-
tromagnetic field case, it is easy to find the corresponding
monad fields.

In the case when ∣Eð1Þ ∣ > ∣ Bð2Þ ∣ , we can choose the
monad field as follows:

τA =
∣E 1ð Þ ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

1ð Þ − B2
2ð Þ

q θ 0ð Þ −
B 2ð Þ
E 1ð Þ

θ 3ð Þ
 !

: ð77Þ

Comparing Equation (77) with Equation (A.14), one
finds the velocity field of the comoving observers with the
electromagnetic field in the inertial reference frame, which
is given by the following:

vA =
B 2ð Þ
E 1ð Þ

: ð78Þ

Inserting Equation (75) into Equation (64), we have the
following:

F = cos αð Þ p ∧ τAð Þ − sin αð Þ ∗ p ∧ τAð Þ½ �, ð79Þ

where

p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

1ð Þ − B2
2ð Þ

q
∣E 1ð Þ ∣

E: ð80Þ

The expressions for the electric and magnetic fields in the
frame (Equation (85)) are readily obtained comparing Equa-
tion (79) with Equation (3):

EA = cos αð Þp,
BA = − sin αð Þp:

ð81Þ

Both covectors are parallel to each other; consequently,
the Poynting vector vanishes in this reference frame.

In the opposite case, ∣Bð2Þ ∣ > ∣ Eð1Þ ∣ , the auxiliary 2-form
can be rewritten as follows:

F = ∗ B ∧ θ 0ð Þ −
E 1ð Þ
B 2ð Þ

θ 3ð Þ
 !" #

: ð82Þ

Now, inserting Equation (82) into Equation (64), the field
tensor can be rewritten as follows:

F = sin αð Þ q ∧ τBð Þ + cos αð Þ ∗ q ∧ τBð Þ, ð83Þ
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where

q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

2ð Þ − E2
1ð Þ

q
∣B 2ð Þ ∣

B, ð84Þ

τB =
∣B 2ð Þ ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

2ð Þ − E2
1ð Þ

q θ 0ð Þ −
E 1ð Þ
B 2ð Þ

θ 3ð Þ
 !

: ð85Þ

Comparing Equation (85) with Equation (A.14), one
finds that the velocity field of the observers comoving with
the electromagnetic field in the inertial reference frame is
given by the following:

vB =
E 1ð Þ
B 2ð Þ

: ð86Þ

The expressions for the electric and magnetic fields in the
frame (Equation (77)) are readily obtained comparing Equa-
tion (83) with Equation (3):

EB = sin αð Þq,
BB = cos αð Þq:

ð87Þ

Clearly, both covectors are parallel to each other; conse-
quently, there is no Poynting vector in this frame.

7. Superposition of a Coulombian Electric Field
and the Field of a Point Magnetic Dipole

As an example of a nonpure field, the superposition of a Cou-
lombian electric field and the magnetic field is studied here,
considering the following functions:

M r, ϑð Þ = Q
r
,

N r, ϑð Þ = k sin2ϑ
r

,
ð88Þ

for which the electromagnetic field tensor is as follows:

F = −
Q
r2
θ 1ð Þ ∧ θ 0ð Þ +

k sin ϑ

r3
θ 1ð Þ −

2k cos ϑ
r3

θ 2ð Þ
� �

∧ θ 3ð Þ:

ð89Þ

From Equation (89), and using Equation (4), the electric
and magnetic field covectors in the inertial reference frame
represented by the monad field τ = θð0Þ are as follows:

E = −
Q
r2
θ 1ð Þ,

B = −
2k cos ϑ

r3
θ 1ð Þ −

k sin ϑ

r3
θ 2ð Þ:

ð90Þ

The electromagnetic field invariants are as follows:

I1 =
2
r6

k2 sin2ϑ + 4 cos2ϑ
� �

−Q2r2
� 	

,

I2 =
8kQ cos ϑ

r5
:

ð91Þ

From the second invariant, one can see that the electro-
magnetic field is of the nonpure type everywhere, except in
the equatorial plane. The electromagnetic field is of the null
type on the surface:

k2 sin2ϑ + 4 cos2ϑ
� �

−Q2r2 = 0: ð92Þ

Outside this peanut-like surface, the electromagnetic field
is of the electric type, while in its interior is of magnetic type;
there is no light surface, but a light ring (or a light circle) on
the peanut waist, with radius r = ∣k/Q ∣ , and only there, the
field is of the pure null type; see Figure 4.

From a classical point of view, the electromagnetic field of
an electron is like the one discussed here, using SI units:

k→ μ0
4π

Me,

Q→ e
4πε0

,
ð93Þ

and the corresponding light ring has a radius:

r =
Me

ce
= 1:9 × 10−13 m, ð94Þ

where Me ~MBohr = 9:27 × 10−24 J/T is the electron’s mag-
netic moment, e = 1:60 × 10−19 C is the electron’s charge,
and c = 2:99 × 108m/s is the speed of light.

In the following two subsections, we consider the velocity
field of this superposition in the equatorial plane where the
field is of the pure type, and outside this plane where the field
is nonpure.

7.1. The Velocity Field on the Superposition’s Pure Field
Region.On the equatorial plane, where the field is of the pure
type, the field tensor (Equation (89)) is already a simple
bivector. Using the ideas of Section 4, it can be rewritten as
follows:

FI = −∗
k
r3
θ 2ð Þ ∧ θ 0ð Þ −

r
k/Q

θ 3ð Þ
� �� �

, ð95Þ

for r < ∣k/Q ∣ , the monad field is as follows:

τI =
∣k/Q ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/Qð Þ2 − r2

q θ 0ð Þ −
r

k/Q
θ 3ð Þ

� �
, ð96Þ
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which allows to write Equation (99) as follows:

FI = −∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/Qð Þ2 − r2

q
∣k/Q ∣

k
r3
θ 2ð Þ ∧ τI

2
4

3
5: ð97Þ

Comparing Equation (97) with Equation (3), the mag-
netic field in the reference frame described by the monad
field (Equation (96)) is as follows:

BI = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k/Qð Þ2 − r2

q
∣k/Q ∣

k
r3
θ 2ð Þ: ð98Þ

The field tensor (Equation (89)) can also be rewritten as
follows:

FII = −
Q
r2
θ 1ð Þ ∧ θ 0ð Þ −

k/Q
r

θ 3ð Þ
� �

: ð99Þ

In addition, for r > ∣k/Q ∣ , we can use as a monad field:

τII =
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − k/Qð Þ2
q θ 0ð Þ −

k/Q
r

θ 3ð Þ
� �

, ð100Þ

which allows to write Equation (99) as follows:

FII = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − k/Qð Þ2

q
r

Q
r2
θ 1ð Þ ∧ τII : ð101Þ

Comparing Equation (101) with Equation (3), the electric
field in the reference frame represented by Equation (100) is
as follows:

EII = −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −

k
Q

� �2
s

Q
r2
θ 1ð Þ: ð102Þ

From Equation (96), inside the light surface, on the equa-
torial plane, the electromagnetic field is rotating rigidly in the
inertial reference frame with velocity:

vI =
Q
k
r, ð103Þ

while, outside of the light surface, also on the equatorial
plane, it is rotating differentially with velocity.

vII =
k
Qr

: ð104Þ

7.2. The Velocity Field on the Superposition’s Nonpure Field
Region. The auxiliary covectors are as follows:

E = −
Q cos α

r2
−
2k cos ϑ sin α

r3

� �
θ 1ð Þ +

k sin ϑ sin α

r3
θ 2ð Þ,

B = −
2k cos ϑ cos α

r3
+
Q sin α

r2

� �
θ 1ð Þ −

k sin ϑ cos α
r3

θ 2ð Þ:

ð105Þ

Inserting the corresponding components of E and B into
Equations (78) and (86), we find the velocity of the comoving
observers described by the monad field τB as measured by the
inertial observers at rest with the rotation axis:

vB =
1
vA

=
Qr cos α − 2k cos ϑ sin α

k sin ϑ cos α
=

k sin α sin ϑ

Qr sin α + 2k cos α cos ϑ
:

ð106Þ

The two equalities come from Equation (76). One can see
that on the equatorial plane, the above expression reduces to
Equation (103); hence, vB = vI . Hence, vA and vB are the veloc-
ities of the rotating observers, respectively, inside and outside
the surface where the first invariant vanishes (Equation (92)).

The function αðr, ϑÞ is found by plugging Equation (91)
in Equation (67):

α =
1
2
arctan

4kQr cos ϑ
k2 sin2ϑ + 4 cos2ϑ
� �

−Q2r2

" #
: ð107Þ

The speed field corresponding to Equation (106) is shown
below on Figure 5; it can be seen that the speed of the electro-
magnetic field vanishes on the z-axis, growing to reach the
speed of the light on a ring on the waist of the peanut-like sur-
face. The white dotted line corresponds to the vanishing of the
first electromagnetic invariant; inside it, the speed field for vB
is plotted, while outside for vA. The field is everywhere of the

2

1

0

–1

–1 1
–2

–0.5 0.50

Figure 4: The displayed peanut-like surface is an implicit plot of the
vanishing of the first invariant I1 = 0 (Equation (92)). Inside this
surface, the electromagnetic field is of the magnetic type, while
outside it, of the electric type, the field is of the null type on this
surface. The field is of the nonpure type everywhere, except on the
equatorial plane, where it is pure (I2 = 0). Only in a circle on the
peanut’s waist, the electromagnetic field reaches the speed of light
and there both invariants vanish, in agreement with Equation
(16). Hence, there is no light surface, but a light circle.
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nonpure type, except on the equatorial plane. Only on the
equatorial plane, inside the surface I1 = 0, the electromagnetic
field rotates rigidly. Notice that the speed of light is reached
only on the light ring (the intersection of the surface I1 = 0
and the equatorial plane ϑ = π/2, where I2 = 0); only there
the electromagnetic field is of the pure null type; notice that
this is in complete agreement with (Equation (16)).

8. Conclusions

In this work, a covariant 3 + 1 splitting formalism was used to
study rotating axially symmetric electromagnetic fields in spe-
cial relativity. Two sets of observers have been introduced: a
family of observers at rest with the symmetry axis and a family
of comoving observers with the electromagnetic field in rota-
tion around the symmetry axis. These comoving observers
do not detect any Poynting vector in their corresponding ref-
erence frame. Due to the presence of light surfaces (or light cir-
cles), i.e., the regions where the electromagnetic field rotates
with the speed of light, it was not possible to fill the entire
space with one single family of rotating observers, instead
two subfamilies were required, one at each side of the surface.

From a methodological point of view, to introduce the
rotating observers, it was necessary to consider two cases:

(1) For pure nonnull electromagnetic fields, I1 ≠ 0 and
I2 = 0, two subsets of rotating observers fI, IIg have
been introduced by looking for the reference frame
where either the electric vector or the magnetic vector
is absent

(2) For nonpure electromagnetic fields, I2 ≠ 0, other two
subsets of rotating observers fA, Bg have been intro-
duced, this time by looking for the reference frame

where the electric and magnetic vectors are parallel
to each other

In each case, the exact expressions for these observers’
velocities have been given with respect to the reference frame
at rest with the symmetry axis.

In the case of pure fields, it was found that the electro-
magnetic field can rotate in a vast number of ways, from rigid
rotation to different kinds of differential rotation. It also
became apparent that for each rotational state of a magnetic
field, there was a different associated electric field, although
they were all similar up to a conformal factor; a different
associated charge density and a different light surface. This
light surface is in the regions where the electromagnetic field
is of the pure null type. Several examples have been given; all
of them are related to rotating magnetic dipoles, to show
these latter features.

In the case of nonpure fields, the calculations have been
more cumbersome. However, it has been also clear that they
can also rotate in a vast number of ways. As an example, a
superposition of a Coulombian electric field and dipolar
magnetic field has been presented. The resulting field can dis-
play different kinds of rotation, from the rigid one to the dif-
ferential one. The field’s rotation speed reaches that of the
light only in a circle on the equatorial plane.

As expected from Equation (16), the above examples
show that only null pure fields rotate with the speed of light,
while other types rotate with a subluminal speed.

The examples employed can be used not only for peda-
gogical purposes, but they are also of relevance in astrophys-
ics and cosmology. In particular, these examples suggest that
the magnetospheres of stars and other astrophysical objects
may be quite diverse depending on the rotational state of
the electromagnetic field. In the case of numerical studies of

3

3

2

2

1

1

1

0.8

0.6

0.4

0.2

0

0

0
x

vz

–1

–1

–2

–2
–3

Figure 5: Speed of the observers of vanishing Poynting vector for the superposition of a Coulomb field and the magnetic field of a point
dipole. With respect to the z-axis, the left half is approaching while the right half is receding. The white dotted line corresponds to the
vanishing of the first electromagnetic invariant; inside it, the speed field for vB is plotted, while outside for vA. The field is everywhere of
the nonpure type, except on the equatorial plane. Only on the equatorial plane, inside the surface I1 = 0, the electromagnetic field rotates
rigidly. Notice that the speed of light is reached only on the light ring (the intersection of the surface I1 = 0 and the equatorial plane ϑ = π/
2), where I2 = 0; only there the electromagnetic field is of the pure null type; notice that this is in complete agreement with Equation (16).
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neutron stars and other hard objects, it is necessary to take
into account that corotating frames do not describe correctly
the situation on the light surface, instead it should be better to
consider a reference frame at rest with the rotation axis.

As suggested by other authors [10, 11] and the examples
presented here, the charge density in the magnetosphere of
neutron stars is separated into regions of positive and nega-
tive charges. These regions offer a safe environment for anti-
matter to accumulate in time. Perhaps from the annihilation
of this antimatter with cosmic rays, the charge density could
be reconstructed. If this were the case, it would be possible to
determine the rotation state of the electromagnetic field
around a neutron star, in particular for those stars possessing
a magnetic dipolar moment aligned with the rotation axis. As
an application of this theory to the study of neutron stars and
pulsars, it would be possible to get the function dM/dN , from
Equation (49), a key ingredient of function ξ (Equation (32)).
This function determines the form of the light surface, ξ = 1,
Equation (35); the 4-velocity field of the electromagnetic
field, Equations (36) and (41); and the structure of the electric
field, Equation (46). These latter features are known so far
from numerical studies of neutron stars with a rigidly coro-
tating electromagnetic fields around them [21, 28, 29], but
of course the corresponding features of the real neutron stars
could be more diverse than these models suggest.

Appendix

A. Cartan Formalism and Theory of Arbitrary
Reference Frames

Let us consider the four-dimensional Minkowski space with
the signature ð+, − , − , − Þ, although our approach works
for full general relativity. The Greek indices are four-
dimensional taking values from 0 to 3, and the Latin indices
are three-dimensional. The summation convention of Ein-
stein for repeated indices is also adopted. However, in the
formalism of reference frames, there are only Greek indices,
and the splitting into space-like and time-like physical
objects means that the first are orthogonal in their free indi-
ces to the time-like monad vector (they are projected to the
three-dimensional space of the reference frame), whereas
the time-like objects represent contractions with the monad
vector. The indices in parentheses are tetrad components.

The line element,

ds2 = dt2 − dr2 − r2 dϑ2 + sin2ϑdφ2� �
, ðA:1Þ

together with the corresponding orthonormal tetrad,

θ 0ð Þ = dt,

θ 1ð Þ = dr,

θ 2ð Þ = rdϑ,

θ 3ð Þ = r sin ϑdφ,

ðA:2Þ

is employed.

We will use the Cartan formalism of exterior forms. It
provides a natural language to describe a wide range of phys-
ical theories, like electromagnetic fields [2, 3, 31], frames of
reference [15, 18], and perfect fluids [32]. The coordinate
bases are in these case sets of four covectors (1-form), dx0,
⋯, dx3, whereas the orthonormal tetrad base is θð0Þ,⋯, θð3Þ.
Each of these bases of 1-form is actually a 4-dimensional cov-
ector. The wedge (exterior) product is simply the antisym-
metric tensor product (with the antisymmetrization
denoted by the Bach parentheses). The rank of the forms
can go from zero (for scalars) up to 4; the higher-rank forms
are identically zero in four dimensions. The scalar product of
vectors and covectors is represented by a point if the vectors
are written without indices, A · B. In the opposite case, the
product will have a more general meaning, dxμ · dxν = gμν:
the product of two covectors of the base gives the contravar-
iant component of the metric tensor, with the same indices as
the factors of the product.

The dual conjugation with respect to the components,
i.e., in their indices, is denoted by the asterisk symbol placed
above the corresponding subindexes or under the superin-
dexes. On the other hand, the Hodge asterisk represents the
dual conjugation written in a more abstract form with the
asterisk placed in front of the form. It is convenient to recall
that the asterisk acts onto the bases of the form being equiv-
alent to the conjugation of the components of the form (but
not both simultaneously, of course). If two Hodge asterisks
are applied, then the forms of odd rank do not change,
whereas those of even rank change sign.

With this definition,

∗ dxα1∧⋯∧dxαpð Þ = 1
4 − pð Þ! E

α1⋯αp
β1⋯β4−p

dxβ1∧⋯∧dxβ4−p ,

ðA:3Þ

where

Eαβγδ =
ffiffiffiffiffiffi
−g

p
εαβγδ,

Eαβγδ = −
1ffiffiffiffiffiffi−gp εαβγδ

ðA:4Þ

are the covariant and contravariant components of the axial
tensor of Levi-Cività, and the Levi-Cività symbol is defined
as follows:

εαβγδ = ε αβγδ½ �,

ε0123 = +1:
ðA:5Þ

By means of exterior differential operator,

d ≔ dxμ∇∂μ∧ ≡ θ μð Þ∇X μð Þ
∧, ðA:6Þ

one can introduce the gradient, divergence, and rotor opera-
tors; see [15].

Any specific reference frame is physically related only
with a state of motion of a swarm of probe observers together
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with their detectors defined in terms of a congruence of time-
like worldlines or, in an equivalent way, in terms of τ, the tan-
gent vectors to the worldlines.

Therefore, τ is a unitary time-like vector:

τ · τ = 1: ðA:7Þ

Moreover, the metric tensor g is required as an additional
ingredient to introduce the four-dimensional projector:

b = g − τ ⊗ τ, ðA:8Þ

which is also used as a metric tensor in the three-dimensional
subspace locally orthogonal to the field τ. Since bμντ

ν ≡ 0,
det bμν = 0, and b the signature of b is taken as 0, −, − , − ,
the “three-dimensional” scalar product of two vectors is as
follows:

A•B = −bμνA
μBν ≡ ∗ τ ∧ Að Þ∧∗ τ ∧ Bð Þ½ �, ðA:9Þ

where these vectors are projected automatically onto the
aforementioned three-dimensional subspace. If the vectors
belong already to the mentioned subspace, they are usually
represented in bold fonts: Aμ = bμνA

ν. The axial “three-
dimensional” vectorial product is as follows:

A × B = ∗ A ∧ τ ∧ Bð Þ: ðA:10Þ

These algebraic operations are equivalent locally to the
usual scalar and vectorial products; therefore, we denote
them by the same symbols.

An arbitrary 4-covector q has a scalar projection onto the
monad:

q
τð Þ
≔ q · τ, ðA:11Þ

and a vector projection onto the 3-dimensional subspace:

q
3ð Þ
≔ b q, ·ð Þ, ðA:12Þ

which is orthogonal to the monad by definition. Therefore,

q = q
τð Þ
τ + q

3ð Þ
: ðA:13Þ

The 4-velocity u of any object can be easily expressed
through its 3-velocity v and the monad vector, namely,

u =
dt
ds

τ + vð Þ,

v = b
dx
dt

, ·
� �

,

8>><
>>: ðA:14Þ

where physical time and length relative to the reference frame
under consideration are t and x; in particular, this means τ
= dt; hence, u · τ = dt/ds, while s is the proper time along
the u’s-world line.

The covariant derivative of the wavevector is decom-
posed in the form:

τμ;ν = τνGμ +Dμν + Aνμ, ðA:15Þ

where G is the acceleration of the reference frame:

G = ∇ττ: ðA:16Þ

Dμν, the symmetric part of space projector, is the tensor
of the rate of change of the deformations, i.e., of the congru-
ence describing our reference body:

Dμν = τα;βb
α
μð b

β
νÞ, ðA:17Þ

where the parentheses denote the symmetrization. This
interpretation is due to the fact that the Lie derivative with
respect to the wavevector has the meaning of a time deriva-
tive andDμν is precisely half of the Lie derivative of the tensor
projector (the metric tensor in the subspace orthogonal to τ),
and can be used as a measure of the evolution of scales in this
subspace:

Dμν =
1
2
£τbμν: ðA:18Þ

This tensor can be also split in the expansion scalar, its
trace:

Θ =
1
2
Dα
α =

1
2
Dαβbαβ, ðA:19Þ

and a traceless part which is known as the shear tensor:

σμν =Dμν −
2
3
Θbμν: ðA:20Þ

The antisymmetric part of the spatial projector of Equa-
tion (A.15) is the tensor of rotations:

Aνμ = τα;βb
α
μ½ b

β
ν�, ðA:21Þ

where the parentheses denote antisymmetrization. Using this
tensor, one can introduce the vector of rotation:

ω =
1
2
∗ τ ∧ dτð Þ = ∗ τ ∧ Að Þ,

A =
1
2
Aαβdx

α ∧ dxβ,
ðA:22Þ

where ∗ is the aforementioned Hodge asterisk performing
the dual conjugation of the differential forms.
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B. Charge and Current Densities in Rotating
Reference Frames

Consider the nonholonomic orthonormal tetrad in a rotating
reference frame:

τ =
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p θ 0ð Þ − vθ 3ð Þ
� �

, θ 1ð Þ, θ 2ð Þ,

χ =
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p θ 3ð Þ − vθ 0ð Þ
� �

,
ðB:1Þ

where θðαÞ are given by Equation (A.2); of course, it is
defined only for ∣v ∣ <1.

In its turn, this nonrotating tetrad can be expressed as fol-
lows:

θ 0ð Þ =
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p τ + vχð Þ,

θ 3ð Þ =
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p χ + vτð Þ:

ðB:2Þ

Its insertion in the 4-current covector leads to the follow-
ing:

j = ρθ 0ð Þ − Jθ 3ð Þ =
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ρ − vjð Þτ + vρ − Jð Þχ½ � = ~ρτ − ~Jχ:

ðB:3Þ

Hence, the charge and the current densities in a rotating
reference frame are as follows:

~ρ =
1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ρ − vJð Þ,

~J = 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p J − vρð Þ:
ðB:4Þ

These expressions are similar to those found in special
relativity for inertial reference frames [1].
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Figures on the manuscript show graphics of some mathemat-
ical expressions on the text.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

We dedicate this work to the memory of our friend, col-
league, and mentor, Professor Nikolai V. Mitskievich, who
passed away on January 1st, 2019. M.A. Muñiz Torres
(CVU:810197) and P.J. Domínguez (Postdoctoral fellowship
No. 741231) appreciate the support provided by the Consejo
Nacional de Ciencia y Tecnología (CONACyT). This work

was funded by the University of Guadalajara through
PROSNI program grant no. 254912/289191.

References

[1] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields,
Butterworth-Heineman, 4th Edition edition, 2000.

[2] N. V. Mitskievich, “Electromagnetic fields: their classification
in general relativity and propagation in a vacuum,” Electro-
magnetic Phenomena, vol. 6, no. 17, pp. 124–132, 2006.

[3] N. V. Mitskievich, “Classification of electromagnetic fields in
general relativity and its physical applications,” 2008, https://
arxiv.org/abs/0802.3474.

[4] A. Rogava, G. Dalakishvili, and Z. Osmanov, “Centrifugally
driven relativistic dynamics on curved trajectories,” General
Relativity and Gravitation, vol. 35, no. 7, pp. 1133–1152, 2003.

[5] Z. Osmanov, “Efficiency of the centrifugally induced curvature
drift instability in AGN winds,” Astronomy & Astrophysics,
vol. 490, no. 2, pp. 487–492, 2008.

[6] Z. Osmanov, G. Dalakishvili, and G. Machabeli, “On the
reconstruction of a magnetosphere of pulsars nearby the light
cylinder surface,” Monthly Notices of the Royal Astronomical
Society, vol. 383, no. 3, pp. 1007–1014, 2008.

[7] C. Fendt and R. Ouyed, “Ultrarelativistic magnetohydrody-
namic jets in the context of gamma-ray bursts,” The Astrophys-
ical Journal, vol. 608, no. 1, pp. 378–390, 2004.

[8] L. I. Schiff, “A question in general relativity,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 25, no. 7, pp. 391–395, 1939.

[9] D. L. Webster and R. C. Whitten, “Which electromagnetic
equations apply in rotating coordinates?,” Astrophysics and
Space Science, vol. 24, no. 2, pp. 323–333, 1973.

[10] P. Goldreich and W. H. Julian, “Pulsar electrodynamics,” The
Astrophysical Journal, vol. 157, pp. 869–880, 1969.

[11] J. Petri, “Theory of pulsar magnetosphere and wind,” Journal
of Plasma Physics, vol. 82, no. 5, pp. 1–89, 2016.

[12] M. Zamaninasab, E. Clausen-Brown, T. Savolainen, and
A. Tchekhovskoy, “Dynamically important magnetic fields
near accreting supermassive black holes,” Nature, vol. 510,
no. 7503, pp. 126–128, 2014.

[13] G. M. Graham and D. G. Lahoz, “Observation of static electro-
magnetic angular momentum in vacua,” Nature, vol. 285,
no. 5761, pp. 154-155, 1980.

[14] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons,
3rd Ed edition, 1999.

[15] N. V. Mitskievich, Relativistic Physics in Arbitrary Reference
Frames, Nova Science Publishers, Inc (US), 2006, See also this
author's previous work https://arxiv.org/abs/gr-qc/9606051.

[16] N. N. Bogoliubov and D. V. Shirkov, Quantum Fields, The
Benjamin/Cummings Publishing Company, Inc., 1983.

[17] V. I. Antonov, V. N. Efremov, and Y. S. Vladimirov, “Monad
method and canonical formalism of general relativity,” Gen-
eral Relativity and Gravitation, vol. 9, no. 1, pp. 9–19, 1978.

[18] G.-L. A. García-Parrado, “Dynamical laws of superenergy in
general relativity,” Classical and Quantum Gravity, vol. 25,
no. 26pp, article 015006, 2007.

[19] R. Lanza and A. Meloni, The Earth’s Magnetic Field, Springer-
Verlag, Berlin-Heidelberg, Germany, 2006.

[20] J. Pétri, J. Heyvaerts, and S. Bonazzola, “Global static electro-
spheres of charged pulsars,” Astronomy and Astrophysics,
vol. 384, no. 2, pp. 414–432, 2002.

16 Advances in High Energy Physics

https://arxiv.org/abs/0802.3474
https://arxiv.org/abs/0802.3474
https://arxiv.org/abs/gr-qc/9606051


[21] F. C. Michel and J. Li, “Electrodynamics of neutron stars,”
Physics Reports, vol. 318, no. 6, pp. 227–297, 1999.

[22] A. V. Tur, S. Maurice, M. Blanc, and V. V. Yanovsky, “Solu-
tions of the plasma equilibrium within the magnetic field of a
point dipole,” Physics of Plasmas, vol. 5, no. 9, pp. 3101–
3115, 1998.

[23] E. W. Hones and J. E. Bergeson, “Electric field generated by a
rotating magnetized sphere,” Journal of Geophysical Research,
vol. 70, no. 19, pp. 4951–4958, 1965.

[24] K. Yano, The Theory of Lie Derivatives and Its Applications,
North Holland Publishing Co., Groningen, 1957.

[25] T. J. Willmore, “The definition of Lie derivative,” Proceedings
of the Edinburgh Mathematical Society, vol. 12, no. 1, pp. 27–
29, 1960.

[26] A. A. Gusev, U. B. Jayanthi, K. T. Choque, G. I. Pugacheva,
N. Schuch, and W. N. Spjeldvik, “Antiproton radiation belt
produced by cosmic rays in the Earth magnetosphere,” Geo-
physical Research Letters, vol. 30, no. 4, 2003.

[27] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al., “The dis-
covery of geomagnetically trapped cosmic-ray antiprotons,”
The Astrophysical Journal, vol. 737, no. 2, p. L29, 2011.

[28] C. Kalapotharakos, I. Contopoulos, and D. Kazanas, “The
extended pulsar magnetosphere,”Monthly Notices of the Royal
Astronomical Society, vol. 420, no. 4, pp. 2793–2798, 2012.

[29] B. Cerutti and M. Beloborodov, “Electrodynamics of pulsar
magnetospheres,” Space Science Reviews, vol. 207, no. 1-4, arti-
cle 315, pp. 111–136, 2017.

[30] B. Kosyakov, Introduction to the Classical Theory of Particles
and Fields, Springer, Berlin, 2007.

[31] M. Arrayás, D. Bouwmeester, and J. L. Trueba, “Knots in elec-
tromagnetism,” Physics Reports, vol. 667, pp. 1–61, 2017.

[32] N. V. Mitskievich, “Modeling general relativistic perfect fluids
in field-theoretic language,” International Journal of Theoreti-
cal Physics, vol. 38, no. 3, pp. 997–1016, 1999.

17Advances in High Energy Physics


	Relativistic Rotating Electromagnetic Fields
	1. Introduction
	2. Electromagnetic Fields in Arbitrary Reference Frames
	2.1. Classification of Electromagnetic Fields and Its Propagation
	2.2. Covariant Maxwell Equations

	3. Electromagnetic Fields with Angular Momentum
	4. Pure Rotating Electromagnetic Fields
	5. Point Magnetic Dipoles in an Arbitrary Rotation State
	5.1. Point Magnetic Dipoles with Rigid Rotation
	5.2. Point Magnetic Dipoles with Differential Rotation and a Deformed Light Cylinder
	5.3. Point Magnetic Dipoles with Differential Rotation and a Light-Like Torus

	6. Nonpure Rotating Electromagnetic Fields
	7. Superposition of a Coulombian Electric Field and the Field of a Point Magnetic Dipole
	7.1. The Velocity Field on the Superposition’s Pure Field Region
	7.2. The Velocity Field on the Superposition’s Nonpure Field Region

	8. Conclusions
	Appendix
	A. Cartan Formalism and Theory of Arbitrary Reference Frames
	B. Charge and Current Densities in Rotating Reference Frames
	Data Availability
	Conflicts of Interest
	Acknowledgments

