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Abstract
We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the Ginz-
burg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from the stan-
dard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton pulses of both 
arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity and the dispersion 
of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-autonomous solitons.
Keywords: nonlinear, Ginzburg-Landau Equation, Non-Autonomous Solitons.

Resumen
Se hallan y discuten soluciones de tipo solitones no autónomos en el caso de no linealidad y dispersión implícitas en la ecuación de 
Ginzburg-Landau con coeficientes variables. El principal objetivo del artículo es obtener de manera sistemática las soluciones de dicha 
ecuación mediante una versión simplificada del mapeo propuesto por He-Li a partir de las soluciones solitónicas autónomas de la 
ecuación de Ginzburg-Landau estándar de coeficientes constantes. Bajo este mapeo, se encuentran pulsos solitonicos de amplitudes 
tanto fijas como arbitrarias que dependen de una función que es restringida por una única condición que involucra la no linealidad y 
la dispersión del medio. Esté resultado es importante porque puede usarse como una herramienta para la manipulación paramétrica 
de solitones no autónomos.
Palabras clave: no lineal, ecuación de Ginzburg-Landau, solitones no autónomos.

Introduction

As it is well known, dispersion and dissipation are extremely important for soliton pulse propagation in nonli-
near media. These two processes are the main cause for the distortion and losses of the signal  (Agrawal, 2001; 
Hasegawa, & Matsumoto, 2003; Ablowitz, Prinari, & Trubatch, 2004), and have been studied since the end of 
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1960’s, although it was not until 1980’s that people began to use amplifiers to compensate those losses (Hase-
gawa, & Matsumoto, 2003). In the amplification process, the silica doping of fibers is commonly used (Ablowitz, 
Prinari, & Trubatch, 2004).

Theoretically, this kind of propagation is mainly described by the nonlinear Schrödinger equation (NLS), but 
other equations can be used, such as the Sine-Gordon, Korteweg-de Vries, and Ginzburg-Landau equations that 
can also describe this kind of soliton propagation (Agrawal, 2001; Hasegawa, & Matsumoto, 2003; Ablowitz, 
Prinari, & Trubatch, 2004).

Nowadays, there are significant advances in the description of pulses in nonlinear media and the way they 
can be manipulated. The NLS equation with variable coefficients, and its non-autonomous nonlinear dyna-
mical systems form (Malomed, 2006; He & Li, 2011; Pérez-Maldonado, & Rosu, 2015) are very important 
in this context of variable dispersion and nonlinearity, which bring losses and gains during the propagation. 
The manipulation of these pulses for optimal propagation is usually called “soliton management”, or also for 
its specific use in optical devices as “dispersion management” (Malomed, 2006; Porsezian et al., 2007; Cen-
turion et al., 2006).

In the case of non-autonomous models, the soliton management is defined by four parameters (Zhao, Luo, 
& He, 2010): a) amplitude (or width), b) frequency (or velocity), c) phase and d) time position. It is possible 
to control the soliton dynamics with a careful selection of their functional form of these parameters.

In this paper, we work out an extension of the method of non-autonomous NLS management (Pérez-Maldona-
do, & Rosu, 2015) to the Ginzburg-Landau equation (GL), employing both fixed amplitudes and arbitrary ones.

Compared to NLS, the GL equation has smaller damped terms and considerably bigger nonlinear terms 
(Malomed, 1991), and thus it governs the amplitude evolution of the dissipative waves in finite spatial neigh-
borhoods over instabilities close to the critical points of the singularities (Akhmediev & Ankiewicz, 2005).

1.  The non autonomous model

Soliton interaction between NLS non-autonomous solitons has been studied in a systematic way by Serkin and 
coworkers (Serkin, & Hasegawa, 2000; Serkin, & Belyaeva, 2001;  Serkin & Hasegawa, 2002; Serkin, Hasegawa, 
& Belyaeva, 2004) who have been the pioneers in the discussion of the non-autonomous solitons (Serkin, Hase-
gawa, & Belyaeva, 2007). They proved that the non-autonomous solitons can propagate within nonlinear media 
when their amplitude and velocity are controlled (Serkin, Hasegawa, & Belyaeva, 2007). 

The NLS equation governing the propagation of an optical soliton through an optical material with engineered 
dispersion and nonlinearity is 

i                + f (z)             + g(z)|ψ(z, t)|2 ψ(z, t) + iγ(z)ψ = 0.
∂ψ(z, t)

∂z
∂2 ψ(z, t)

∂t2                                    (1)

 where f(z) and g(z) are the dispersion and nonlinearity management, respectively, and γ(z) = γloss + γR, with  
γloss > 0, the constant loss parameter of the fiber, and γR < 0 is the Raman gain parameter. If the functions f(z), 
g(z), and γ(z) are complex functions, then equation (1) is known as the complex nonlinear Ginzburg-Landau 
equation (CGL) (Fang & Xiao, 2006).

We now apply the He-Li mapping (He & Li, 2011) of transforming the NLS equation with variable coefficients 
(NLS-CV) to a standard NLS equation of constant coefficients to the case of pulse propagation in doped fiber 
amplifiers for which the one-dimensional cubic CGL equation (Agrawal, 1991) 

i        + (pr (z) + ipi (z))         + (qr (z) + iqi (z)) |ψ|2 ψ = i(γr (z) + iγi (z))ψ	∂ψ
∂z

∂2ψ
∂t2                        (2)
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is considered as a good model. Here ψ(z, t) is the field envelope function, t is the retarded time and z the 
propagation distance, pr measures the wave dispersion, pi the spectral filtering (pi < 0)  of the amplifier, which 
is important because it suppresses the Gordon-Haus jitter of the soliton central frequency;[1]  qr and qi > 0 
represent the nonlinear coefficient and the nonlinear gain/absorption processes, respectively. We noticed that 
the nonlinear gain helps to suppress the growth of radiative background (linear mode) which always affects 
the propagation of nonlinear stationary pulses in real fiber links; γr and γi are the linear gain and the frequency 
shift, respectively (Fewo et al., 2005). The parameters pr, pi, qr, qi, γr,  and γi are real functions depending on 
the propagation coordinate. In many cases, this type of model is used for dispersion-managed solitons (DMS) 
(Biswas, 2002; Hasegawa, 2000) in transmission lines employing a periodic map, such that each period is built 
up by two types of fibers of generally different lengths and opposite group velocity dispersion (Turitsyn et al., 
2003; Turitsyn, 1998; Turitsyn et al., 1999). On the other hand, a too strong dispersion management could lead 
to system performances even worse than the conventional soliton systems (Hirooka, Nakada, & Hasegawa, 2000).

Previously, some exact solutions were obtained by other methods. For example, the stability of chirped bright 
and dark soliton-like solutions of the cubic CGL equation with variable coefficients has been investigated in 
(Fang, & Xiao, 2006), but here we will use a modified He-Li mapping (He & Li, 2011; Pérez-Maldonado, & 
Rosu, 2015). 

1. 1. Autonomous mapping of the non-autonomous solitons in amplified dissipative fibers

Firstly, we should look for the integrability of the equation (2) by finding a direct relationship with the standard 
GL equation (Akhmediev & Afanasjev, 1995; Soto-Crespo et al., 1997) (without quintic term), given by 

i        +                           + (s - iε)|ψ|2ψ = iδψ,∂ψ
∂z









- iβD
2

∂2 ψ
∂t2

                                                    (3)

 where ψ is the envelope of the optical field, and z and t are the propagation distance and retarded time, respec-
tively. The parameters in (3) are all real parameters, namely, δ stands for linear gain or loss, β for spectral filtering, 
and ε for nonlinear gain. The parameters D and s may only take the values ±1, i.e., when D = 1 the dispersion is 
anomalous and when D = -1 the dispersion is normal, and s = 1 or s = -1 stands for positive or negative Kerr 
effect (Facao & Carvalho, 2015), respectively. The proposed ansatz is similar to the Talanov ansatz (Talanov, 1970),
 

ψ(t, z) = u(T, Z)e-iϕ(t, z),                                                                          (4)

where the phase function  describes the instability (Hasegawa, & Matsumoto,  2003). With T = T(z, t) and Z 
= Z(z), the central task is to determine the specific expressions for pr, pi, qr, qi, γr, γi, ϕ, T, and Z  by requesting 
u(T, Z)  to satisfy the standard autonomous GL equation (3). It is important to mention that for rare-earth 
doped optical fibers, which are normally used by people for pulse amplification with retarded time T = t - β1effz 
(Agrawal, 1991), where β1eff  is related to the effective group velocity, we have a T-dependent Z. Therefore, by 
derivating the ansatz (4) and taking into account that ∂ψ/∂t = ψt and  ∂ψ/∂z = ψz, we obtain

iuz +                  uTT + (s - iε)|u|2u + (k1 + ik2)uT + (k3 + ik4)u = iδu,







- iβD
2

                            (5)

from where one can see the following relationships between the parameters  pr (z) =               , D
2

Zz
T t2

 pi(z) = -β       ,
Zz
T t2

      
qr (z) = sZz,  qi(z) = -εZz y γr (z) = δZz, with

k1 =              - 2β     ,D
2

Ttt
T t2

ϕt
Tt

                                                                            (6)
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k2 =       - β       - D     ,Tz
zz

Ttt
T t

2
ϕt
Tt

                                                                         (7)

k3 =       - β        -               +          ,D
2

ϕz
Zz

ϕtt
T t2

ϕ t
T t2

2 γi(z)
zz

                                                             (8)

δ = β        -             .
ϕ t
T t2

2 D
2

ϕtt
T t

2                                                                               (9)

When k1 = k2 = k3 = 0, we have the standard cubic CGL equation (3). For the complete description, we 
need to solve the latter equations to find the specific functional form of each of the mentioned terms. 

Taking T = t - β1    z
eff  

Tt =               = Tξ
∂T
∂ξ

dξ
dt

Tz =               = -β 1   Tξ
∂T
∂ξ

dξ
dz

eff

and substituting into (9)

k1 =              - 2β      ,D
2

Tξξ
T ξ2

ϕt
Tξ

                                                                           (10)

k2 =                - β        - D     ,
-β1   Tξ

zz

ef f
Tξξ
T ξ2

ϕt
Tξ

                                                                (11)

k3 =        - β        -             ,
ϕz
zz

ϕtt
T ξ

2
D
2

2

2
ϕ t
T ξ

                                                                    (12)

δ =            - β        +              ,
γr (z)

zz

2

2
ϕ t
T ξ

D
2

ϕtt
T ξ

2                                                                  (13)

we can solve this system of equations, obtaining the following results

   T(z, t) = F1(z) +               g (z)    2k(t - ωz) + f 1,s.c
k                                                 (14)

Z(z) = (s.c) ∫ g(z)dz + f 2,                                                                      (15)

ϕ(z, t) = -       ln(2k(t - ωz) + f 1),D
8β

                                                             (16)

where f 1  and  f 2  are integration constants, s. c and D. c are mapping complex quantities of the form

s. c =  s + iϵ
s2 + ϵ2   and  D. c = 

+ iβD
2

D
2

2 + β2
. These complex numbers are related to the nonlinear and dispersion 
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coefficients of the autonomous GL equation, respectively; also,  ω = k/8β (16β2 + D2)  and  κ = β 1
                     ,eff 4β

D2 + β2








and so we can obtain the transformation function  F1(z) 

F1(z) =                                       g(z)p(z).+1
k

4β 1
ω

ef f







s.c
D.c                                                        (17)

Therefore, we can express the function for the loss/gain with dependence on nonlinearity and dispersion in 
the form

γ(z) = s. c  g(z) -             , 3D2 k2

16βp(z)                                                                      (18)

so that we are able to obtain the integrability of the system.

2. exact solution for cgl equation of standard coefficients

There exist some exact solutions of the equation (3) (Akhmediev & Afanasjev, 1995; Soto-Crespo et al., 1997; 
Facao & Carvalho, 2015; Conte & Musette, 1995) and for our mapping method we can use any of these solutions. 
In this work, we make use only of the solution proposed by Soto-Crespo et al. (1997) for bright solitons with 
anomalous dispersion D = s = 1. This is because in the anomalous dispersion regime it is possible to study the 
main properties of the soliton-like solutions of equation (3) by applying the well-developed soliton perturbation 
theory of the NLS equation. There are two different solutions proposed by Soto-Crespo et al. (1997), one is for 
solitons with fixed amplitude and the other is for solitons with arbitrary amplitude. In both cases, the soliton 
solution has the form 

u(T, Z) = a(T)exp[i d ln[a(T)] - ωZ],                                                          (19)

where a(T) is a real function, and d and ω are real constants with values 

d± = 3(1 + 2εβD) ±    9(1 + 2εβD)2 + 8(ε - 2βD)2

2(ε - 2βD)                                             (20)

ω =                                   .δ(1 - d2 - 4βdD)
2(d - βD + βd2 D)                                                                      (21)

We also consider the special stability conditions as proposed by Soto-Crespo et al. (1997).

2. 1. The soliton with fixed amplitude

The solution for a(T) is in this case 

	 a(T ) = CB sech (BT),                                                                          (22)

where

		  B =  δ
βd2 + Dd - β

                                                                          (23)
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	 C = 3d(1 + 4β2

2(2β - εD)
                                                                            (24)

and d is given by equation (20) after choosing the plus (minus) sign in front of the square root if D is negative 
(positive). The second value of  d does not lead to a physical solution (Akhmediev & Afanasjev, 1995; Akhmediev, 
Afanasjev, & Soto-Crespo, 1996), as the expression under the square root for C becomes negative.

Soto-Crespo et al. (1997) also provided the following condition of existence of the solution (22),

εs = β 
3   1 + 4β2 - D
     4 + 18β2                                                                         (25)

As this solution exists almost everywhere in the (ε, β) plane, we call it the general solution (Figure 1). The 
curve S itself is the line where this solution becomes singular, i.e., its amplitude BC tends to infinity, while the 
width 1/B vanishes.

2. 2. T﻿he solution with arbitrary amplitude

Another special solution proposed by Soto-Crespo et al. (1997) is obtained if we also impose the condition δ = 0. 
Then, the solution, valid only on the line (25), is 

a(T) = GF sech (GT),                                                                         (26)

where G  is an arbitrary positive parameter, and d, ω and F are given by 

d = 1 + β2 - D
2β                                                                               (27)

0.4

0.3

0.2

0.1

0                     2                     4                     6                     8                    10

D = 1

FIGURE 1
Range of existence of solution (22)

Nota: The curve S (25) in the plane (ε, β) where the solutions with fixed amplitudes (22) become singular, and where the classes of 
special solutions with arbitrary amplitude (26) exist. This plot applies for cubic and quintic cases. The corresponding one for the case of 

anomalous dispersion is also shown by the blue curve for comparison. Above the curve S, δ must be positive for solution (22) to exist, and 
negative below it. The red curve depicts S for D = + 1, similar to obtained by Soto-Crespo et al. (1997).
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ω =  -                                               G2 = -d                       G2(1 + 4β2)    1 + 4β2 - D
4β2







 1 + β2 - D

2β                                  (28)

F  =                                  =                                                                .








d   1 + β2 - D
2ε

1/2 





(2 + 9β2)   1 + β2     1 + β2 - D

2β2 (3   1 + β2 - D)

1/2








                            (29)

The solution (26) represents the arbitrary amplitude soliton. The reason for the existence of the arbitrary 
amplitude solutions is that, when δ = 0, the cubic CGL equation becomes invariant relative to the scaling trans-
formation u → Gu, T → GT, Z → G2 Z. Hence, if we know a particular solution of this equation, the whole 
family can be generated using this transformation. Notice that all parameters of solution (26) except G and the 
coefficient ε are expressed in terms of β.

3.  Solution of the CGL with variable coefficients

We will now use a specific case for the CGL equation with variable coefficients employed in the work of Fang 
and Xiao (2006), to describe a fiber with inhomogeneities. They found solutions for chirped, bright and dark 
solitons. Here, we work with their dispersion parameter and solve their CGL equation by the mapping method.

First, we introduce their dispersion and nonlinearity parameters

p(z) = -     p0 [1 + α1sin(σz)]exp(-μ1z),1
2                                                        (30)

g(z) = g0[1 + α2sin(σz)]exp(-μ2z),                                                             (31)

 where pr ;0 and qr ;0 are ideal fiber parameter; α1 is a smal parameter that characterizes the amplitude of the 
fluctuations; μ1 is a small constant;  is related to the variation period of the fiber parameters. In our case, we only 
need the dispersion parameter and the frequency shift parameter γi(z) is set equal zero, so and we can solve the 
problem analytically.

Now, taking into account all parameters, we obtain the complete solution, with the T equation (14),  Z equation 
(15) and ϕ equation (16) for both cases, where from (17)

F 1 (z) =        +                         -     p0 g0 [1 + α2 sin(σz)]exp(-μ2z) [1 + α1sin(σz)]exp(-μ1z).








1
k

4v
ω

s. c
D. c

1
2     (32)

It is possible to define more solutions, one is for bright solitons with βδ > 0 and another for dark solitons 
when βδ < 0.

3. 1. The soliton solution for fixed amplitude

In accordance with the proposed solution by Soto-Crespo et al. (1997) our solution is 

ψ(t, z) = CB sech (BT )exp[i (d ln[a(T )] - ωZ - ϕ(t, z))],                                      (33)

which is displayed graphically in Figure 2.
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Figure 2 shows the graphs for the soliton solution of the nonlinear CGL equation with variable coefficients with 
anomalous dispersion, i. e. the coefficient D = 1. We note that our solutions present similarities with the solutions 
reported by Soto-Crespo et al. (1997). The values of the parameters are the following: β = 0.25, δ = -0.1, α1 
= 0.05, α2 = 0.1, σ = 0.05, μ1 = μ2 = 0.01, p0 = -0.5, g0 = 0.3, and s = 1, likewise those of Soto-Crespo et al. 
(1997) and Fang, & Xiao (2006).

3. 2.  The soliton solution with arbitrary amplitude

On the other hand, we obtain the following soliton solution with arbitrary amplitude, 

ψ(t, z) = GF sech (GT )exp[i(d ln[a(T)] - ωZ - ϕ(t, z))],                                       (34)

with its graphic representation in the figure (3), where we have used the following values of the parameters: G 
= 1, β = 0.1, α1 = 0.05, α2 = 0.1, σ = 0.05, μ1 = μ2 = 0.01, p0 = -0.5, g0 = 0.3, and s = 1.

Examination of the obtained solution in equation (19) shows that it is scalable in the amplitude and the va-
riable T(z, t), whereas the scaling in the Z(z) variable produces only a change of the phase of the soliton solution, 
so essentially the solution (19) can be considered as scalable. The importance of the scaling properties lies in the 

5

4

3

2

1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
t

z z

1
0.5

0 0       2        4       6        8      10

t

0    1    2    3    4    5    6    7    8    9   1 0

FIGURE 2
Non-autonomus soliton with fixed amplitude

Nota: a) Soliton solution with fixed amplitude for bright solitons obtained from (33). b) Contour plot.

FIGURE 3
Non-autonomus soliton with arbitrary amplitude

Note: a) Bright soliton of arbitrary amplitude obtained from (34). b) Contour plot.
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possibility to obtain a whole family of solutions once a particular solution is known, just by varying the scaling 
parameter. In our case, each member of the family of solutions will have a different phase. Physically, changes in 
the scaling parameter can be achieved by varying the power of the source (laser) of the pulses.

Furthermore, we can notice that under this transformation, the propagation function only depends on the 
nonlinearity, as expected, because the nonlinearity is a characteristic of the medium where the pulse is propaga-
ting.  Indeed, the function T(z, t) has a direct dependence on the nonlinearity of the medium, but also depends 
on the traveling variable and the dispersion of the medium as one can see from equation (14). This is what assures 
the management of solitons through the compensation of the dispersion and nonlinearity functions according 
to equation (18).

Prospective

The mathematical treatment uses the simplified mapping of the He-Li method as a way to find solutions of 
nonlinear equations of variable coefficients, commonly used in nonlinear optics for modeling the propagation 
of solitons in nonlinear media.

The method can be implemented for other nonlinear equations different from the ones treated here, taking 
into account that it is only necessary to find the transformation equation that takes us to the mapping itself, where 
we can use all the solutions of autonomous nonlinear equations already known.

Conclusion

Using a modified He-Li mapping approach we have been able to obtain the appropriate conditions that assure 
the system integrability for the management of non-autonomous solitons in nonlinear media, such as, fiber optics 
or waveguides, for the nonlinear Ginzburg-Landau equation with variable coefficients. In addition, it is possible 
to use all known solutions of the autonomous Ginzburg-Landau equation, because, in our development we find 
a transformation function  that maps the GL equation of variable coefficients to the autonomous GL equation, 
as well as we can use the stability conditions of the GL equation presented in the literature.
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Notes

[1] The Gordon-Haus jitter effect refers to the fact that the fluctuations of the central frequencies of the optical pulses are 
temporally coupled through the group velocity dispersion: a change of the central frequency is presented as a change of the 
group velocity dispersion, which affects the time coordinate of the pulse.
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