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Abstract

The transverse control approach proposed by Morin and Samson is a technique
based on the use of transverse functions to practically stabilize controllable drift-
less systems. This control technique is able to cope with practical stabilization of
admissible trajectories, including fixed points, as well as practical stabilization of
non-admissible trajectories.

In this thesis we attempt to generalize this technique to the control of second-
order systems and, in particular, to the case of mechanical systems described on
Lie groups. Within this class one finds mechanical systems subjects to (holonomic
and non-holonomic) constraints as well as underactuated mechanical systems. It is
important to note that for systems in this class, the drift vector field is required along
with the control vector fields to generate the accessibility distribution.

We define wertical transversality and we show how transverse functions satisfy
vertical transversality, a property that generalizes transversality to second-order sys-
tems. By applying the methodology introduced in this thesis to second-order systems
one achieves practical stabilization of the configuration variables, namely one ensures
that the projection of the state trajectories onto the configuration manifold converge
to an arbitrarily small neighborhood, specified in advance, of the desired equilibrium
point.

Although the approach outlined in this thesis does not constitute a complete
extension of Morin and Samson’s approach based on transverse functions, it takes
initial steps toward what might constitute an interesting theory for the stabilization

of admissible trajectories for second-order systems.
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Resumen

La aplicacion de la técnica de control por medio de funciones transversas prop-
uesta por Morin y Samson a sistemas controlables sin deriva da como resultado una
estabilizacion practica de las trayectorias del sistema. Esta técnica trata con estabi-
lizacion préctica de puntos fijos, trayectorias admisibles e inclusive trayectorias no
admisibles.

En esta tesis se generaliza la nociéon de transversalidad para sistemas de segundo
orden y se plantea el desarrollo de un método de control para estabilizar sistemas
de segundo orden, en particular para sistemas mecanicos que evolucionan en grupos
de Lie. Dentro de esta clase de sistemas se encuentran sistemas mecénicos sujetos
a restricciones (holonémicas y no holonémicas) como también sistemas mecénicos
subactuados. Es importante notar que en esta clase de sistemas el término de deriva
se requiere, junto con los campos vectoriales de control, para generar la distribucion
de accesibilidad.

En esta disertacion se define transversalidad vertical y se muestra como las fun-
ciones transversas definen funciones verticalmente transversas. Se presenta ademas un
esquema de control para estabilizar sistemas de segundo orden en grupos de Lie usan-
do funciones verticalmente transversas. Este método asegura estabilizacion practica
de las variables de configuracion del sistema, es decir, la proyeccion de las trayectorias
del sistema a la variedad de configuracion converge a una vecindad arbitrariamente
pequena del punto deseado de equilibrio.

El esquema expuesto, atin cuando no resuelve por completo el problema de es-
tabilizacién practica para sistemas de segundo orden, se presenta como el punto de
partida de un esquema que podria llegar a constituir una teoria interesante para la

estabilizacion de trayectorias admisibles para sistemas de segundo orden.
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Chapter 1
Introduction

In control theory, the stabilization of critical systems to fixed points or, more
generally, to admissible trajectories, is still an open research problem. A critical
system [1] is a controllable system whose linearization is non-controllable.

Several systems are critical, examples of these systems can be found when one is
dealing with nonholonomic systems and underactuated mechanical systems.

Systems which do not satisfy Brockett’s condition typically are critical. This con-
dition can be formulated as follows. Consider a control system & = f(x,u) where
[ R" x R™ — R" such that f(0,0) = 0. Brockett 2] states that a necessary
condition to render the origin asymptotically stable for the given system by means of
a continuous feedback control function u : R" — R™, is that the map f be open at
zero. There are generalizations of Brockett’s condition that involve asymptotic stabi-
lization of equilibria for systems evolving on more general spaces than on Euclidean

spaces [3].

In view of this, difficulties arise while attempting to produce a unified method to
solve various control problems such as asymptotic stabilization of fixed points and
trajectory tracking for critical systems.

Different control approaches have been proposed to stabilize this class of systems.
For instance, as no continuous feedback control function exists in order to stabilize
critical systems, some approaches make use of discontinuous feedback functions for
the same purpose. However, Ryan [18| has shown, under certain assumptions, that if

a control system is stabilizable to a given trajectory using a discontinuous feedback



law, then there also exists a continuous feedback law which stabilizes the system to
the given trajectory.

Samson in [19] showed that it is possible to surmount the restriction embodied in
Brockett’s condition by using time-varying feedback to asymptotically stabilize the
unicycle-type robot to a fixed configuration. By a time-varying feedback one means
a control function that depends not only on the system state but also explicitly on
time. A more general result in this direction is presented in [4].

By using the homogeneous approach [8], [17], based on time-varying feedback to
control critical systems, one is able to obtain time-varying feedback laws which force
the trajectories of the system to converge exponentially to the equilibrium point.
Nevertheless, as expounded in [11], the feedback control laws resulting from this
control strategy typically are non-differentiable at the desired equilibrium point, thus
raising difficulties regarding the robustness of the feedback laws in the presence of

modeling errors.

In recent work, Morin and Samson [16], [14] have developed a new framework,
the so called transverse function approach, which allows one to tackle both, the point
stabilization and trajectory tracking problems for controllable driftless systems. This
control approach is applicable to systems of the form & = D(z,t) + > ", u'X;(z)
where x is a curve on M, a finite-dimensional manifold, D : M x R — T'M is a
“time-varying” vector field which depends continuously on its second argument (D
may be seen as a perturbing term), and { X7, ..., X,,} is a set of vector fields defined
on M that satisfy local accessibility at the desired point to be stabilized.

By using this control approach, the trajectories of the resulting feedback system
converge to a pre-specified, arbitrarily small neighborhood of the reference trajectory

(or fixed point.) This sort of convergence is called practical stabilization.

An advantageous property of this approach is that the resulting feedback laws are
smooth with respect to the state, and this allows one to deduce certain properties of

robustness for the resulting feedback system.

The aim of this thesis is to provide initial steps towards a generalization of the
transverse function control approach for the stabilization of second-order systems.
Being more precise, the ultimate purpose would be to stabilize every admissible tra-

jectory for systems of the form:



i = D(z) + ZuiX}ift(x) (1.1)

where x now represents a curve on TM, the tangent manifold of a finite dimen-
sional manifold M, D is a second-order vector field on TM, and {X,...,X,,}
(m < dim(M)) is a set of vector fields defined on M that satisfies local accessi-
bility at a given point in M. Equation (1.1) defines a second-order system on M and
it may represent a given critical system.

We assume that the set {D, X1t . Xt} senerates the accessibility distribution
for every ¢ € R, while {X]* ... X} only spans a proper subdistribution thereof,
thus the transverse function control approach cannot be directly applied to System
(1.1).

In this thesis we present the characterization of a new property which we refer to
as “vertical transversality”, which somewhat generalizes the transversality property
to the case of second-order systems. We attempt to give a methodology to control
second-order systems of the form (1.1) evolving on Lie groups. We focus on mechanical
systems since several mechanical systems are naturally modeled as systems on Lie
groups. For instance, mechanical systems which usually arise in physical applications
are rigid bodies in space, cart-like vehicles, space and underwater robots, which evolve
on Lie groups.

It is important to note that this work serves as a starting point towards a gener-
alization of the transverse function control approach to control second-order systems

and that research work remains to be done in this respect.

This thesis is organized as follows; in Chapter 2 we fix the notation used through-
out this work, we recall some preliminaries on vector bundles, differential geometry,
some background in Lagrangian mechanics and basics on Lie theory. In Chapter 3
we review the “transverse function control approach” proposed by Morin and Samson
[14] and illustrate, in detail, its application to the control of the chained form system.
Chapter 4 presents the main work of this thesis, some necessary lemmas are stated
and proved, as well as the vertical transversality condition and we expound a possible
application thereof to the stabilization of second-order systems. In Chapter 5 some

examples are developed in detail. Finally Chapter 6 presents conclusions of this work



along with brief descriptions of some of the problems that remain open for research.



Chapter 2
Mathematical preliminaries

The purpose of this chapter is to recall basic mathematical concepts required in
the following chapters. We will first fix the notation used throughout the present
thesis, then review basic background on vector bundles, mechanical systems and on
Lie theory. The interested reader may find additional details in [9], [10], [12], [20].

2.1. Definitions and conventions

We assume the reader is familiar with basic notions of point-set topology and
differential geometry.

Let I C R denote a nonempty interval in R which can be finite or infinite, closed
or open at either of its endpoints. If A is a set then idy : A — A denotes the
identity map on A. Let a € NU {oo} and n € N. A mapping f : A — B where
A and B are manifolds, is said to be of class C* (or simply f is C'®) if it is a times
continuously differentiable. If f: A — B is of class C* one says that f is smooth.
C%(A; B) denotes the space of mappings of class C* of A into B while C*(A) stands
for C*(A;R). T" = Tx---xT (n copies of T), denotes the n-torus, where T = R/27Z.

The Kronecker’s delta is denoted by 5;- which equals 1 if © = 7 while equals zero
if © # j. Sometimes we shall use Einstein summation convention for the sake of
readability, that is, repeated doubled indices indicate a summation. In particular let
x € R" and let {ey,...,e,} be the canonical basis for R" (namely, e; is the vector

which components are all zero except the i-th component which is 1), then x = z'e;



fori=1,...,nequals z =3 2.

By a manifold we refer to a finite-dimensional, paracompact, differentiable man-

ifold. Let M be a manifold, 7,M denotes the tangent space of M at p € M while
TM, the tangent bundle of M, is the disjoint union of each T,M for p € M,
(TM = [1,cp T,M) endowed with the differentiable structure inherited from the
differentiable structure in M. Let p € M, the bundle projection of T'M, denoted by
iy 2 TM — M, maps v in T,M to my(v) = p.
Likewise, Ty M denotes the cotangent space of M at p € M, T*M is the cotan-
gent bundle of M consisting of the disjoint union of the T;M for all p € M,
(T*M = ]_[pe v Iy M) equipped with the differentiable structure inherited from the
differentiable structure in M. 73, : T*M — M stands for the bundle projection of
T*M which, for any p € M and every ¢ € T M satisfies 73,(0) = p.

Given a mapping f € C'(M; N) where M and N are manifolds, we write T, f :
T,M — Ty N for the (linear) tangent map of f at p. T'f denotes the bundle map
covering f, that is, T'f maps the tangent space of M at any p € M into the tangent
space of N at f(p). One says that T'f covers f if the diagram below commutes,

Tf

™ TN
M i \Lﬂ-N
M ! N

ie. myoTf = fomy. Whenever the base point p is clear from the context we will
simply write T'f for T}, f.

I'*(T'M) stands for the space of sections of class C* of the tangent bundle of M.
An element X in I'*(T'M) is a mapping M — T'M such that my;0 X = idys, X is said
to be a C* vector field (defined) on M. On the other hand, I'*(7*M) is the space of
C* sections of the cotangent bundle of M, T € I'*(T*M) is a mapping M — T*M
satisfying 73, o T = idy;. 7T is said to be a C* 1-form on M. The commutative

diagrams below will help to make a clearer idea.

TM M M

idy A idy T




In the sequel we shall usually write X, for X (p) and Y, for T(p) in order to not
overburden some expressions. We shall also assume that manifolds, vector fields and
functions are of class C'™ unless otherwise stated, (i.e. M, N manifolds, X € I'(T'M)
and f € C(M, N) are smooth).

One endows I'(T'M) with a C°°(M)-module structure by defining the sum of
vector fields as (X +Y), = X, + Y, and the product of functions in C*°(M) and
vector fields as (fX), = f(p)X, for all X|Y € I'(T'M), f € C*(M) and p € M.
We can also provide I'(T'M) with an R-algebra structure by defining, in addition
to the module structure, a mapping [-,-] : I(T'M) x I'(T'M) — T'(T'M) such that
(X,Y](f) = X(Y(f)) =Y (X(f)) for all f € C>®(M). The operation [, | defined this
way is called the Lie bracket product and it can be shown to satisfy, for every X, Y,
Z in I'(T'M), the following properties:

1. [-,-] is an R-bilinear mapping,
2. [X,Y]=—[Y, X], i.e. it is anti-commutative,
3. (XL, Z)|+ [Z,[ X, Y]]+ [Y,[Z, X]] = 0, i.e. satisfies Jacobi’s identity.

An algebra with product operation [, ] satisfying the three latter properties is
said to be a Lie algebra.

Suppose {X1,..., X, } C T(T'M), then Lie({X1,..., X, }) denotes the Lie algebra
generated by {Xi,..., X, }, i.e. it denotes the intersection of every Lie subalgebra of
['(TM) which contains {X;i,..., X, }.

Let X be a vector field on a manifold M, we shall write exp(tX)(p) for the solution
(whenever it exits), of the differential equation & = X (x) at time ¢ and with initial
condition z(0) = p. If for every p € M, & = X(z) has a solution with initial value
x(0) = p defined for all ¢ € R, then X is said to be complete.

Let M be a smooth manifold, we denote the Lie derivative of f € C°°(M), with
respect to X € I'(TM) by Lx f.

Let E denote a vector space and E* its associated dual space, then T°(E) =
(R E*) ® (Q;_; E) is the tensor space of type (s,r) over E. If t € T(E), t is said
to be a tensor of type (s,r) over E.

Let M be a smooth manifold, then T3(T,M) = (Q_, Ty M) @ (Q;_, T,M) is
the tensor space of type (s,7) over the tangent space of M at p € M. The tensor

7



space of type (s,r) over T'M is denoted by T*(T'M) and it is the disjoint union of all
the T (T,M) for p € M (T3 (TM) = [1,ep 17 (T, M)), endowed with the differential
structure inherited from the differential structure on M. T?(T'M) possesses, indeed,
a vector bundle structure (cf. the following section). T'(T*(T'M)) denotes the set
smooth sections of the tensor space of type (s,r) over TM. If T € I'(T5(T'M)) then
T is said to be a tensor field of type (s,7) over M. It is easy to check that a vector

field on M is a tensor field of type (1,0) while a 1-form is a tensor field of type (0, 1).

2.2. Vector bundle geometry

In this section we recall notions on vector bundles since these arise as state mani-
folds for systems considered in this work. For instance, in the case of simple mechani-
cal systems the configuration manifold represents all possible positions or orientations
of the system while the space of velocities plus positions and orientations can be seen
as the tangent bundle of the configuration manifold. Let us recall the definition of a

smooth vector bundle.

Definition 1 A wvector bundle is a 4-tuple (E, B, F,mg) having the following prop-

erties:

1. E, B are smooth manifolds and F' is an R-vector space.
2. g E — B is a surjective and smooth map.
3. For every x in B, E, = n5'({z}) is diffeomorphic to F.

4. For every open set U C B, there exist a diffeomorphism 1 : ng(U) — U X F

which maps E, linearly to {x} x F, so that the following diagram commutes

P

5 (U)CE UxF
WB\L /
UcCB

where py 1s the canonical projection onto the first factor.



Given a vector bundle (F, B, F,7p) one calls E the total space, B the base
space (or simply the base), F' the standard fiber, 7 the bundle projection (or the
projection), E,, for x € B, the fiber over x, and (75" (U), ) a local trivialization.
Sometimes we write g : E — B instead of (F, B, F,mg) to denote a vector bundle.

A section of a vector bundle 7 : £ — B is a map S : B — F such that
mg oS = idg. The zero-section of a vector bundle is the section that maps every
x € B to the zero vector in the fiber over x. A vector bundle 7g : F — B is said to
be a trivial vector bundle if there exists a local trivialization (F,), i.e. if there

exists a diffemorphism v : E — B x F' such that the following diagram commutes

m5Y(B) = E— BxF
WBl’ /
B

Let M be an n-dimensional manifold then T'M, the tangent bundle of M, admits
the vector bundle structure (7'M, M,R", ms) where for every p € M the fiber over p
is T,M.

Let M and N be differential manifolds and f a mapping in C'(M; N). Let X and

Y be vector fields defined on M and N respectively. One says that X is f-related
toYiff TfoX =Y of, ie. iff the following diagram commutes

M ! N
xl iy
Tf
™ TN

Let A and B be vector fields defined on M and A, B vector fields defined on N such
that A is f-related to A and B is f-related to B, then one easily checks that [A\, E]
is f-related to [A, B].

If (z,...,2") are local coordinates for M, an n-dimensional manifold, then the
natural coordinates for TM are denoted (x!,... 2" vl ... v") (where v' = v(z?),
i=1,...,n). We shall often write x for the local coordinates on M and (z,v) for the

natural coordinates on 7'M associated with x. Using this notation, ((z,v), (wy, wn))

are local coordinates on T'T'M, where the first pair (z,v) represents coordinates for

9



TM and the pair (wp,wy) denotes coordinates for the fiber above (z,v).

Let p: I — M be a curve on a differentiable manifold M then we set p = Tp o %.
One easily checks that p, so defined, is a curve p : I — T'M satisfying mp(p(t)) = p(t)
for every t € I.

A vector field X along a curve o : I — M is amap X : 0(I) — T'M such
that X, € T M for every t € 1.

Given v in TM, the vertical space over v, denoted by (T,TM)""", is defined as
the kernel of the tangent map associated to the projection in M, i.e. (T,TM)""* =
kernel(T,,my) C T, TM. Having defined the vertical space over a vector in T'M, we
define a subbundle of the tangent tangent bundle called the vertical subbundle
given by TTM" = 1, cpp (TLTM)¥". An element w in TT M is said to be a
vertical vector. Let us outline how this is represented in coordinates. For every
v € TM one has Tymy - T,TM — TryM, since mpy : TM — M. Let v €
T,M, if v = (p,v) in a given coordinate chart m(p,7) = p. It straightforward to
verify that for any w € TT M represented in coordinates by ((p,v), (Wy,, Wy)) one has
T, (((p,0), (Wr,wn))) = (p,wL), therefore an element w in the vertical subbundle

TTM " is expressed, in coordinates, as ((p,v), (0,wy)).

Given v,w € T'M such that my(v) = mp(w), one defines the vertical lift of w
by v, denoted lift(v, w), to be the vector in T, TM given by

)

where v, : R — T'M is the curve determined by 7, ., (t) = v + tw.
Given a vector field X € ['(T'M), the vertical lift of X is the vector field X't €
D(TTM) defined by X = lift(v, X, )

0

hft(U, w) = TOVv,w (a—
r

Assume that v, w € T,M are respectively represented in coordinates by (p,v) and
(p,w). Note that, since v,,, : R — TM, one has T}y, : TR — T,  »TM.
Now, for every t € R one has v,,(t) = (p,v + tw), so it is easy to check that
T %‘t) = ((p,7+tw), (0,w)). Therefore, since lift(v, w) = ToYpw( %‘O), one has
that, in coordinates, lift(v,w) = ((p,7), (0,w)). Consider v € T'M represented in
coordinates by (p,v), suppose that X is a vector field on M which is represented in
coordinates by X, = (f, Yx) for any x € M, thus X! = lift (v, X,), so in coordinates

10



X = ((3,0),(0,X,)).

A vector field X € T'(T'T'M) is said to be a vertical vector field if T'my 0 X = 0.
Here it is important to note that a vertically lifted vector field is vertical, whereas a
vertical vector field is not, in general, the result of vertically lifting some vector field.

A vector field X € I'(TTM) is said to be a second-order vector field (one
also says that X defines a second-order equation on M) if T'my; o X = idpy,. This
definition can be extended naturally to vector fields along curves in T'M, namely, if
~v: 1 — TM is a curve and X is defined along v then X is said to be second-order
along vy if for every ¢t € I, Tmp (X)) = 7(2).

Consider v € T'M, represented in coordinates by (p,7), and assume that X is a vec-
tor field on 7'M, which is represented in coordinates by X, = ((p,7), (X1.(v), Xu(v))).
Thus Ty 0X (v) = (p, X1,(v)), therefore X is vertical if X1, (v) = 0 while X is second-
order if X1 (v) = v.

A system of the form & = X(z), with 2 : I — TM and X € I'(TTM) is said to

be a second-order system iff X is second-order.

The Liouville vector field denoted by C' is a vector field on the tangent space
at a manifold M (C € I'(TTM)) which is defined by C(v) = lift(v,v) for any v €
TM. In coordinates, if v € T'M is represented by (p,v), then C, is represented by

(7, 2), (0,9)).
The canonical almost tangent structure on M, denoted by Jy, is a tensor
field of type (1,1) over TM (i.e. Jyy € T'(THTTM))) defined by

(Ju (X)), = lift (v, T'mpr 0 X (v))

where X is a vector field on TM and v € TM. The tensor field Jy;, so defined, can

be shown to satisfy these two properties [5]

[JM, JM] =0 and [O, JM] = —JM.

In coordinates, if X, is represented by ((p,7), (X1 (v), Xu(v))) then (Jy (X)), =

lift ((p, 0), (p, X1.(v))) = ((7,9), (0, XL(v))).
The conditions that define a vector field to be vertical or second-order can also be

formulated using the canonical almost tangent structure together with the Liouville

11



vector field [5]. A vector field X on T'M is said to be vertical iff Jy(X) = 0 or,
alternatively, if [C, X] = —X. X is said to be second-order if Jy/(X) = C. One
also defines, using the almost tangent structure, the notion of semispray. Let X be
a vector field defined on T'M, the tangent bundle of a smooth manifold; X is said to

be a semispray (or alternatively an almost spray) iff

Ju(X)=0C and C, X] =X.

One notices, by observing the properties above, that a semispray is also a second-order

vector field.

The vertical space at v € T'M, being a subspace of the tangent space at v, is canon-
ically given by the kernel of the tangent map associated with the bundle projection
as stated before. However the choice of a horizontal space at v is not canonically

determined, but it can be defined, instead, by means of a connection on M.

Definition 2 Let M be a smooth manifold. A smooth affine connection V on M,

(or simply a connection on M), is a linear map
V:I'TM) —T(T"M @ TM)
such that, for each f € C®°(M) and every X € I'(T' M),

V(fX)=df @ X + fV(X).

We regard a connection as a map V : I'(T'M) x I'(TM) — T'(T'M) such that V :
(X,Y) — VxY. Given vector fields X and Y in I'(T'M), the covariant derivative
of Y along X is defined to be the vector field VxY € I'(T'M). It is easy to show
that the conditions already mentioned in Definition (2) are equivalent to requiring,
from V, the following conditions, for every X, Y in I'(T'M):

1. (X,Y) — VxY is R-bilinear

2. Vf)(Y:f(vXY), VfECOO(M>

12



3. Vx(fY) = (Lxf)Y + f(VxY), VfeC=(M).

Let (U, ¢) be a coordinate chart for M with coordinates (z',...,z"). Given that

the covarlant derivative of the basis vector field a—j with respect to the basis vector
field 5 i is a vector field on M, there exist functions on M, FZ], i =1,...,n, such
that
0 p O o
vai%_r”ﬁxk ,j=1,...,n.

The terms Ffj, 1,5,k = 1,...,n, referred to as the Christoffel symbols, uniquely
define a connection. If; in a given coordinate chart, the vector fields X and Y are
given by X = X' 81 and Y = YZ ,1=1,...,n, then we have

VxY = (V (Yiaii»(X)

;o 0 i 0
= (dY ®%+Y val“)(X)

‘ J\ 0 0
_ i k_~ i
= (X 8:1:’“) oxt ¥ v(“ﬁ) (81:1)

ot (. 0\ 0 k 0
= X Xky? .
ox! da ( Ok ) ozt * V(% ( aﬂ)

oY 0
= — X', —+X'Y'V
axt " ko (5or) <8:L"‘
oY N\ 0
— _Xk Fl Xkyz i
(axk Tk )a
therefore, rearranging the indices, the expression for the covariant derivative of Y
along X, is
VxY = a—kaurr’“)(w 9
7 o oxk’

A curve ¢ : I — M is said to be a geodesic for an affine connection V if
Vewyé(t) = 0 for every t in I. Let X be a vector field defined on M and suppose
that ¢ : I — M is an integral curve of X, thus X.4 = ¢é(t) for every ¢t € I, or
equivalently, X o ¢ = ¢é. Recall that ¢ : I — TM is defined by ¢é(t) = Tie (%L).
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One has ¢(t) = Tic (%’t), consequently é(t) = Ty(X o ¢) (%‘t). By applying the
chain rule one gets &(t) = Ty X o Tic (% ‘ t) and, by using the definition of ¢ one gets
é(t) = TowyX 0 é(t), or equivalently, é(t) = TepyX o X(c(t)). In coordinates one has

é(t) = %fji X7(c(t)). Then the expression, in coordinates, of V) ¢(t) = (VxX), is

: 8Xé(t) J i j k 9
Vé(t) C(t) = ax] Xc(t) -+ ij(c(t))Xc(t) Xc(t) %
= (&(t) + Thele(t)) & () (1)) o (2.1)

Now suppose that the covariant derivative of X along X equals zero. Hence the

integral curve c of X is geodesic iff

E(t) + Tl (e(t) e (t) & (t) =0, fori=1,...,n; Yt el.

The latter is a second-order differential equation on M. If 2 = ¢ and v* = ¢

for © = 1,...,n, so the curve ¢ in natural coordinates for T'M is expressed by
(x',... 2" v, ..., v"), then the corresponding first-order differential equation on T'M
is

o=

y ; - fori=1,...,n

o= =T () v

These first-order equations define a vector field S on T'M given in coordinates by

Sawy = V'3 — Tl (z)v/vk 2. This vector field is known as the geodesic spray

associated with the connection V. The integral curves of S are curves in T'M whose

projection onto M yield geodesics for the connection V.

Given a connection V, we define its associated torstion tensor field T by
T:(X,)Y)— VxY —-VyX — [X,Y].

T is indeed a tensor field of type (1,2), so one may regard it as a function T :
D(TM)xI'(T'M) — T'(T'M) which is bilinear with respect to function multiplication.
Indeed given X, Y, vector fields defined on M, and functions f, g in C*°(M) T satisfies

14



T(fX,9Y) = (V(gY)) (fX) = (V(fX))(gY) = [fX,gY]
= (dg®Y +gVY)(fX) = (df ® X + fVX)(gY) — [fX, gY]
= dg([X)Y +gVyx)Y —df(gY)X = [V X — fg[X,Y]
—fX(9)Y +gY(f)X
= fgVxY — fgVy X + fdg(X)Y —gdf(Y)X — fg[X,Y]
—fdg(X)Y +gdf (V)X
= fgVxY — fgVyX — fg[X,Y],

therefore T(fX,gY) = fg(VxY — Vy X — [X,Y]) ie.

T(fX,gY)=fgT(X,Y).

One easily checks that T" also satisties T'(X+Y, Z) = T(X,Y)+T(Y, Z) and T'(X, Y +
Z)=T(X,Y)+T(X,Z) for X,Y,Z in T(TM).
Suppose that X,Y are given in coordinates by X = X2 and YV = Y°

0 S
31«1'77'_

1,...,n. In this case

T(X,)Y) = VxY —VyX —[X,Y]
R 4 -\ 0 oxXk N\ 9
= X4 TEXYT ) — [ YT 4 TR XY ) —
<8x’ Tl )8xk ((%J L >8xk
oYk . axk_ N\
— X Tyl ) —
(8:6@ oxJ )

rk
)

= (DEX'Y7 —ThX'Y) %

therefore the expression for the torsion tensor field evaluated at (X,Y) is

o 0
k i k %
T(X,Y) = (ThXY ~THXYY) oo,
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hence, the components of the torsion tensor field in coordinates are

k _ ik k
Tij_rz‘j_r'

Ju

i, 5, k=1,...,n.

2.3. Simple Mechanical Systems

In this section we review the basics on modeling mechanical systems in the La-
grangian formulation. This class of systems plays a fundamental role in this thesis for
the ultimate purpose consists in devising a control strategy to cope with stabilization

and tracking for such systems.

Definition 3 Let M be a smooth manifold and G € T(T9(TM)) a tensor field of type
(0,2) over M such that, for allp € M and for every w € T,M, G satisfies:

1. Gy(v,w) = G,(w,v) for every v € T,M “symmetry”
2. If G,(v,w) =0 then v =0 “nondegeneracy”.

The couple (M, G) is said to be a pseudo-Riemannian manifold and G a pseudo-
Riemannian metric.

Moreover, if G is positive definite, i.e. G,(v,v) > 0 for every p € M and every
v € T,M\{0}, one says that G is a Riemannian metric on M and that the couple

(M, G) is a Riemannian manifold.

Let M be a finite-dimensional, smooth manifold and G a Riemannian metric on
M. Then one defines the bundle map G on T'M, such that Q; P T,M — 17 M,
by Gr(v) = G,(v,-), Vp € M and Vv € T,M. Likewise consider the map G* so that
Q]’i 1 TyM — T,M given by QIE = (QZ)_l, Vp € M. Since G is nondegenerate these
two maps G” and G define canonical maps between T'M and T*M and between T M
and T'M respectively. In coordinates, the components of the metric G are given by
G =6 (8‘;’;“ %). As a consequence, the maps G” and G* satisfy G° (8?51.) = G;jda?
and G* (da') = GV 3?51., where GY, (i,7 = 1,...,n) is defined by G;;G'* = §¥, that is,
the matrix whose entries are G¥ is the inverse of the matrix with entries G;;. Hence,

for a vector field X on M and for a 1-form Y, G satisfies
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9 o , )
g’ (X1@> =GyX'de! G (Tida') = GV, (2.2)

If a manifold is provided with a Riemannian metric then there is a canonical
connection which is torsion free and compatible with the metric. More precisely, if G

is a Riemannian metric on a smooth manifold M, then there exists a unique affine
g
connection V on M which satisfies VX, Y € I'(T'M):

g
1. VxG =0, (metric compatible),
2. T(X,Y)=0, (torsion free),

g
where T is the torsion tensor field associated with G. V is called the Levi-Civita

connection associated with G. Given a coordinate chart, the latter two conditions

g
imply that, [10], the Christoffel symbol, Fjik, of the Levi-Civita connection is given
by:

9. 1 . (0Gy 0Gu  OGk
i — il J _ J
Pk = 2 g (8xk T 0w o ) (2:3)

where G, i,j =1,...,n, are defined by G;;G/* = §F.

Let @ be an n-dimensional smooth manifold. A simple mechanical control
system defined on (@) is a 4-tuple (Q, G, V, F), where @ is the configuration manifold
of the system, G is a Riemannian metric on @, V € C*°(Q) is called the potential
energy function and F = {F' ... F™} is a set of 1-forms on @ that physically
correspond to forces or torques.

By the forced Euler-Lagrange equations one represents the dynamics of (Q, G, V, F)
by

d (0L OL =~ .

— ) - == = JFa 24

dt <aqz) aqz ; w g, ( )
where L : TQ — R, defined by L(v) = 3G (v) — V om(v) for all v € TM, is the
Lagrangian of the system. If, in coordinates, v = (g, ¢), then L(q,¢) = 2Gr()(d,4) —

-2
V(q) = 3Gq d'¢@ — V(q).

17



One can express (2.4) using the Levi-Civita connection associated with G [10] as:

Vad =G odVig)+ Y uigio Fi(g) 2.5)
=1

Notice that this is a coordinate-free representation. Let us now express the equation

in coordinates. By (2.1) and (2.2) one has

P+ @d ) 55 = -G 55 da + Y u"GH(F}(q) dg')
h=1

OV 9, - : 0
_  _chZ" § hori b v

Hence a simple mechanical control system can be represented by the following set of

n second-order differential equations

. g . OV m .
g 7 g -k 153 hpri mh .
§=-Tjla)d ¢ -G @(q)JrhE:lu G"F'(qg) i=1,...,n.

Alternatively, it can be represented by a set of 2n first-order differential equations
(t=1,...,n)

a':,Z — ,U’l

g g - OV m b i
o= () vt = G () + > G F (x)
h=1

with 2 = ¢* and v* = ¢*. From the latter expression one realizes that (2.5) can be

written as a system evolving on T'Q), namely

0 =S59(v) = (G*o V) (v) + Y " w'(GF o F)i(v), (2.6)

=1

g
where SY is the geodesic spray associated with the Levi-Civita connection V.
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A constrained mechanical control system [10|, represented by a 5-tuple
(Q,G,V,F,D), is a simple mechanical control system (Q,G,V,F) subject to con-
straints represented by D, an (n — [)-dimensional distribution on @ given by the
annihilator of D = {wy,...,w;}, [ linearly independent 1-forms on Q.

The dynamics of a given system (Q, G, V, F, D) can be obtained by the application
of the Lagrange-d’Alembert principle, which yields the following equations

d (0L oL .4
— = )-=== i A
i <8ql) aqz ; u + ; WEg,

where \* (k= 1,...,1) are the Lagrange multipliers for the system. Analogously, one

can express this system using the Levi-Civita connection by

g L .
Vig=A—GlodV +> u'G'o F(q)

i=1
where A (related to the Lagrange multipliers) is a section of D+, the G-orthogonal
complement to D, along the curve g. According to [10], if P : TQ) — T'Q denote the
complementary G-orthogonal projection on D and P : T'QQ — T'Q the G-orthogonal

projection onto D+ one has

Vig=—-PoG'odV + ) u'PoG'oF(q), (2.7)

=1

— G g
where V is defined by VxY =V x Y+ A7 ((Vx (AP"))(Y)) where A is any invertible
tensor field of type (1,1) on @) . Note that (2.7) has the same form as (2.5), therefore

it can be expressed as a system evolving on 7T'Q) by a formula analogous to (2.6).

2.4. Lie Theory Preliminaries

Several mechanical systems have as configuration manifold a Lie group that is
a differentiable manifold having a group structure. This class of systems can be

described as evolving on the tangent bundle of the Lie group.

Definition 4 (Group) A group is a set G together with a map p: G x G — G
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(called the group composition or law of composition) which satisfies:

1. w(z,y) € G, Yo,y € G.

2' /"L(:L‘7/'L(y’ Z)) :M(M(:C’y),Z)’ V'I’y?Z e G'

3. There exists e € G such that for every x € G, u(x,e) = p(e,z) = x.

-1

4. Forallx € G there exists an element x=' € G such that p(x,z7') = p(a! z) =

€.

We refer to e as the identity element (or simply as the identity) in G and to x™*

as the tnverse element of x.

For convenience we shall sometimes write g - h or gh instead of u(g,h). Let G be
a group and X a set. By a left action of G on X we mean amap!:G x X — X
which satisfies, for all x € X:

1. l(e,z) =x
2. l(g,l(h,x)) =1l(gh,x) VYg,heqG
Similarly, a right action is a map r : X x G — X that satisfies, for all z € X:
1. r(x,e) ==z
2. r(r(z,9),h) =r(z,gh) VYg,heG

One readily verifies that left and right actions of a group G on itself are naturally
defined by setting I(g, ) = u(g,-) and r(-,g9) = u(-,g). These actions are called left

translation and right translation, respectively.

Definition 5 (Lie Group) A Lie group is a smooth manifold G that has a group
structure compatible with its smooth manifold structure in the sense that the group

multiplication

w:GxG— G w:(g,h) — gh

18 a smooth map.
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It is straightforward to show that if G is a Lie group then the inverse map g — ¢!

is also smooth.

Whenever we refer to Lie groups exp(tX) will denote exp(tX)(e), i.e. if G is a
Lie group and X is a vector field defined on G, exp(tX) stands for the solution of the
differential equation ¢ = X(g) at time ¢ with initial condition e (the identity element
in G).

Let us denote by L, and R, the left and right translations on the Lie group G by
an element g, thus Ly(h) = gh and Ry(h) = hg for all h € G. The following diagram,

involving left and right translations, commutes

Ly

G G
Rhi \LRh
G—F—¢C

i.e. for every g, hin G, L0 Ry, = Ry, 0 L, since for a given p € G, L, 0 Ry,(p) = gph =
Ry o Ly(p).
Since Ly-1 (Ly(h)) = g *(gh) = h and R,-1 (Ry(h)) = (hg)g~" = h, the inverse of L,
is Ly—1 and likewise the inverse of R, is Rg-1.

The tangent space at any point in G can be canonically identified with T.G using
the tangent map associated with the left translation L or with the right translation

R. Indeed given a vector v € T,G, the related vector £ € T.G is given by

§E=TyLy1(v) orby &=T,R,1(v).

In the following we will conventionally use the association specified by the left trans-

lation. Given a vector ¢ € T.G one defines a vector field X on G by

X¢(g9) = TeLy(C),

(an analogous definition holds using right translations). The vector field defined in
this way is said to be left-invariant since X¢(Ly(h)) = T.Lgn(C) = T.(Lg 0 Ly)(C) =
TyLyoT,Ly(C) = ThL,(Xc(h)). One extends this notion as in the following definition.

Definition 6 (Left-invariant vector fields) Let G denote a Lie group and let X
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be a vector field on G. X 1is said to be left-invariant with respect to the group

operation if

Xgh = Tth(Xh> Vg,h eG.

It is straightforward to verify that the Lie bracket product of left-invariant vector
fields is a left-invariant vector field, i.e. if X and Y are left-invariant vector fields
defined on a Lie group then [X, Y], = ThL,([X,Y]s).

The Lie algebra of left-invariant vector fields associated with G, a Lie group,
is denoted by g and is isomorphic to the tangent space of G at e (g ~ T.G). It is
possible to define a Lie bracket product for elements in T,.G due to the association of
a vector in T,G with a vector field defined in g, namely [, (] = [X¢, X¢](e).

Proposition 1 (The tangent Lie group) Let G be a Lie group, i its group op-
eration and € its identity. Then TG can be endowed with a Lie group structure by

defining the group operation p: TG X TG — TG by

o (u,v) = Ty Bag o) (W) + Trg) L (u) (V) (2.8)

where L and R are the left and right translations in G. The identity element e € TG
1s Oz, that s, the zero vector in the fiber over the identity on G, and the inverse of
u € TG is

u™t = —TeLung(uw1 © Trg(u) Rng w1 (1) (2.9)

Proof: First let prove that the group composition of two elements of T'G is in T'G.
Since éﬂ@(v) :G — G and Ewc(u) : G — @ one gets that Tﬁm(v) : TG — TG and
TLag : TG — TG. As TReg()(1) € Trgtumo)G and TLug)(v) € TrguymeC
for all u,v € T'G, the sum in (2.8) makes sense and p(u, v) € Try(wyre@w)G C TG.
Now assume that v € T,G, v € TG, w € T;G, then by (2.8) one obtains that
(v, w) = Thﬁi(v) + Tizh(w). By virtue of the linearity of tangent maps one gets

p(u, p(v,w)) = TyRui(u) + ThiLy(TwRi(v) + TiLy(w))
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Using the fact that ng oTR; = TR, o ng for each g,h in G, (since left and right

translations commute) one obtains

u(u, ,U(U» w)) = Tgéhi(“) + Tghﬁi © Thzg(”) + Tizgh<w)
— TyR; 0 T,Ry(u) + TynRs 0 Ty Ly(v) + Ty Lgn (w)
= Ty Ri(TyRa(w) + ThLy(v)) + T.Lgn(w)

Therefore p(u, p(v,w)) = p(p(u,v),w) since p(u,v) = Tglgbh(u) + Thfg(v), and this
proves the associativity of the product defined in (2.8).
Next, let us verify that 0 € T:G is the identity element in TG with p as group

composition.
1w, 0) = Trg ) Brg0) () + Tro(0) Lrgw (0)
= Tng(u)R€<u>
= u.
Analogously

hence 0 satisfies the properties to be the identity element in T'G.

Since mg(u™!) = 7Tg<—TgE7rG(u)71 o Tﬂc(u)ﬁm(u)fl(u)), Ta(u™) equals (mg(u)) ™",
thus w=' € T, )G then p(u,u™) € T, (yro@ G = TeG and p(u',u) €
T _1ﬂG(u)G = TG, One also has

7 (u)
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p(usu™) = TR, (w) + T ( TLmow1 © Tﬁm(u)_1<u))
= TR )1 () = TLag(u © TLaguy-1 © TRug(u-1 (1)
= TR, -1(u) = TLe o TRyyuy-1(u)
= TR (1) = TReg - (1)
=0

and

plu™u) = TRew) <—Tfim<u>fl ° TfA%(u)fl(U)) + TL 9 (0)
= —TRegw © TLagu1 © TRugu1 () + Ty 1 (w)
= ~TLaguy1 © TRagtu) © TRigu1 (w) + TL 1 ()
= —TLuguy1 () + TL, -1 (u)

-0

Hence (-)7! : TG — TG, defined by (2.9), satisfies the properties of the inverse
map. Finally, the map i, the group law of composition defined in G, is smooth, since
Eg and }A%h are smooth for all g, h € G and, consequently, T’ Eg and Tﬁh are smooth,

therefore so is pu. |

Note that i and u, being group operations in G and T'G respectively, satisfy
i(me(u), 7a(v)) = me(u(u,v)) (and consequently 7¢(u)™' = mg(u™')), ie. the fol-
lowing diagram commutes

TG x TG —2 TG
ﬂgXﬁgl \LWG
GxG a G.

It is important to remark that the following diagrams also commute
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Tp1xTp2

GxG—2 - GxG T(GxG) TG x TG

ﬁi / Tﬁl /

G TG
where p; : G x G — @ is the canonical projection on the i-th factor (i = 1,2). Thus

Ti=poTp x Tpy (2.10)

From now on we shall write E, fz, 1t to denote operations in G, and L, R and p to
denote operations in T'G; € shall denote the identity element in G whereas e = 0z =
the identity element in T'G.

Proposition 2 Let G be a Lie group and let o,7 : [ — G be curves on G. Then

d . ~ ~
at (1(a(t), 7(t)) = To(y Rety(Xot)) + Trity Loy (V) (2.11)

where X and Y are vector fields on G defined along the curves o and T such that

0
; Y;'(t):ET(_>, vtel.
)

Proof: Definea:l — G x G and y: 1 — G by a = (o,7) and v = o a. By
definition 4(t) = Tyy (%h), thus §(t) = T;(i1 o @) (%‘t). Using the chain rule one

obtains ¥(t) = Ty to T (%!t) but, according to (2.10) one has T = poT'p; X T'ps,
Y(t)=po Towypr X Towp2 o Tia (—

or t)'

Using the fact that &(t) = (6(t),7(t)) = (Xo), Yr)), we obtain 4(t) = po Thwypr X
Totyp2(Xow), Yr(r)). Thus

0

Xg(t) = TtO' (E

hence

0

d . . -
p (1o (t), (1)) = ¥(t) = Towy Rery(Xo() + Triy Loy (Yow))

as was to be shown. [ |
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Proposition 3 Let G be a Lie group and 7 : I — G a curve on G. Then the vector
field Z along the curve t — (7(t)) ™" defined by Zypyr =T(r™h) (%h) is given by

Zr(t)*l - _TéLT(t)*l © TT(t)RT(t)*l(YT(t)) (2.12)

where Y is the vector field along T defined by Y = Ty (%‘t).

~

Proof: Consider fi(r,77!), then by (2.11) we have £(¢) = Ty Ry (Yory) +
TT(t)ilLT(t)/(\ZT(t)il)A: O thus TT(t)flLT(t)(ZT(t)fl) - T(t)RT(t)fl(Y:r(t))' USlIlg the
fact that (L,)™! = L,-1 we obtain

riyt = el o Tr Bry - (Ye):
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Chapter 3
Transverse function control approach

In this chapter we review results presented in [13] and [14]| about the transverse
function control approach applicable to controllable driftless systems. We explain
what defines a function to be transverse — so called since the condition these functions
satisfy bears a resemblance with the transversality condition of differential topology.
We also recall a procedure to construct transverse functions for certain cases. We
review the methodology followed by Morin and Samson to achieve practical stabiliza-
tion of points for controllable driftless systems. We also expound how this control
approach is applied to control the chained form system, which is feedback equivalent

to several other systems, among which the unicycle-type robot.

3.1. Characterization of transverse functions

Let Xi,...,X,, denote smooth, linearly independent vector fields on M, an n-
dimensional smooth manifold. Suppose the set { X7, ..., X,,} satisfies the Lie Algebra
Rank Condition (LARC) for some point p € M, i.e.

T,M = {X,: X € Lie({X,,..., Xn ).

Expressed in more geometric terms, the set {Xi,..., X,,} satisfies the LARC at
a point p iff the distribution spanned by {Xj,...,X,} is completely nonintegrable
around p. It is shown in [13| that the latter condition is equivalent to the fact that,

given a neighborhood U of p, there exists an integer k > n — m and a function
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f:T" — M such that f(T*) C U and f satisfies, for every § € T*, the so-called

transversality condition

TyoyM = spang({ X1 50): - - - Ximpoy}) + To.f (ToT"). (3.1)

Thus the assumption that {X7,..., X,,} satisfies the LARC at p € M is equivalent
to the existence of a function, whose image is contained in an arbitrarily small neigh-
borhood of p, such that the tangent space of M at every ¢ in the image of f equals
the sum of the distribution spanned by {Xj, ..., X,,} at ¢ and the image of the tan-
gent map associated to f at ¢g. Any function f satisfying these conditions is called
transverse for the set {X1,..., X, } near p. Notice that, in general, the sum in (3.1)
is not direct, namely x may be larger than n — m. However, when the manifold M
has a Lie group structure, and the vector fields Xy, ..., X,, are left-invariant, the sum
becomes direct and f turns out to be an immersion. In such a case there exists an

explicit method, outlined in the next section, to construct transverse functions.

3.2. Construction of transverse functions for systems
on Lie groups

As we have already mentioned, the construction of transverse functions can be
readily prescribed when M = (G is an n-dimensional Lie group and the elements of
{X1,...,X,,} are left-invariant, linearly independent, smooth vector fields defined on
G, and the set satisfies the Lie Algebra Rank Condition at e, the identity element in
G.

The requirement that the set of controlled vector fields satisfy the LARC at €, i.e.
T:G = {Xe: X € Lie({Xy,...,Xm})} is equivalent, for any point ¢ in G, to

T,G ={X,: X € Lie({X1,..., Xin})},

since by virtue of the left-invariance of the vector fields in Lie({X1,...,X,,}) one
readily transfers the LARC condition at € to an analogous condition at g.
By virtue of the stated assumptions, there exists a function f : T" ™ — G such

that
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Ty0)G = spang({ X15(0), - - - - Xmmp(o}) © Tof(ToT"™) (3.2)

A possible choice for the transverse function f can be described by the following
procedure [14]. Let & € g be the vector associated to X; (i = 1,...,m), i.e. § =
X;(€). Next define a family {G}, : k € N} of subspaces of g, by setting

GkéspanR({[Xiu[Xiza[“ [X X] m ilﬂ"'aijgm’jgk})

119

Consider two mappings A\, p: {m+1,...,n} — {1,...,n} together with an ordered
basis {(1,...,(u} of g, such that:

1. G =spang({Ci, - - -, CaimGy) ), for k=1,... min{k : G, = g}

2. Whenever k > 2 and dim(Gj_1) < ¢ < dim(Gy), one has ¢ = [(as)s Coe)); With
CA(i) € G, Cp(i) €EGyand a+b=Ek.

The set {(1,...,(u}, together with the mappings A and p constitute what is termed
a graded basis for g. With this graded basis one can associate a weight vector
(r1,...,ry) such that r;, = k iff (; € G \Gr_1.

Given a graded basis of g, a transverse function f is constructed by selecting

strictly positive real numbers €,,,1,...,¢, and by defining mappings f; : T — G,
t=m+1,...,n, given in coordinates by
£:(8) = exp ( "0 sin(0) X, , + e’ COS(H)XCW)> . (3.3)

Once these mappings are defined, the expression in coordinates of a transverse func-

tion, f: T"™™ — (@, is given by

f(em—i-la cee a0n> = fn(en)fn—l(en—1> e fm+1(9m+1) (3'4>
where (0,41, . ..,0,) are coordinates on T"™™. Notice that by choosing the positive
reals €,,11,...,&, appropriately one may ensure that the image of f is contained in

an arbitrarily small neighborhood of e.
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3.3. Transverse function control technique for sys-

tems on Lie groups

Consider a control system of the form

g=D(g,t)+ ZuiXi(g) (3.5)

where g represents a curve on an n-dimensional Lie group G, D(g,t) is a drift term
that depends continuously on ¢ and takes values in the tangent space of G at g (D
might be seen as a perturbing term that may be constant with respect its second
argument), and Xi,..., X, are linearly independent, left-invariant smooth vector
fields on G satisfying the Lie Algebra Rank Condition at € € (G. Note that we can
choose any p € G such that (3.5) satisfies the LARC at p, as remarked in the previous
section.
Without loss of generality we assume that {Xi,...,X,,} is linearly independent,
otherwise one may apply an input transformation to (3.5) such that the resulting
control vector fields become linearly independent.

Given that {Xi,...,X,,} satisfies the LARC at e there exists a function f :
T" ™ — G such that:

Tt9)G = spang({ Xis(0)s - - s Xmyp(o)}) © To f (ToT"™). (3.6)

One way to take advantage from the transversality condition (3.6) is to adjoin, to
system (3.5), an auxiliary system which allows us to control the system also along

the image of T'f. Consider this auxiliary system to be

=" we,) (3.7)

where 0 : I — T"™ and {©4,...,0,_,,} is a global frame for TT"™™, that is
TyT"™™ = spang({©1(0),...,0,_,(0)}) for every § € T" ™. Such a global frame
exists because of the triviality of TT"™"™ as vector bundle. If (9!, ... 6"~™) are local
coordinates for T"™™ by using the frame {©;,...,0,_,,} defined in coordinates by

©; =+ (i=1,...,n—m), (3.7) can be written as 0 = w, where w is an R" ™-valued

30



control input.
One defines an error signal z, by using the group structure of the manifold where

the system evolves, namely

z2g-f(0) (3.8)

The error quantifies the difference between the state g of System (3.5) and the image
by f of the state 6 of the auxiliary system. The error equals € iff ¢ = f(6). By
differentiating the error along the trajectories of the composite system (3.5) and

(3.7), we obtain the error dynamics to be

n—m

z = Tzfg)wa -1 OTf (ZU Xzf ZMJTGJC(63<9))

~

+ Topio) Lar (D(2 - f(0), t))) (3.9)

From (3.6) one deduces that given any vector field Z € T'(T'G), there exists a smooth
feedback function (u(z,6),6(z,0)) defined by

Z“ Xigo) — Z w T f(8,(6)) = Tugo Lar (TR0 (2:) = D(: - £(6).1))

such that (3.9) takes the form z = Z,.

It suffices to choose for Z a vector field having € as an asymptotically stable point
(assuming that the projection of D(€,t) onto (spang({ X1z, ..., Xme}))* tends to zero
as t tends to infinity) to make the error dynamics z(¢) tend to € as t — oo. The state

g of the resulting closed loop system

= D(g,t) + Z u'(z,0)X

tends to the image of f, i.e. ast — oo, g(t) — f(0(¢)), and since f(T"™™) is

a neighborhood of e specified beforehand, one obtains practical stabilization [14,
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Proposition 1].

3.4. Example: The chained form system

The purpose of this section is to illustrate how the concepts recalled in this chapter
may be put to use on a specific example. We show how to apply the transverse function
control approach to the problem of stabilization to a fixed point for the chained form
system evolving on R®, which has a Lie group structure that differs from the usual
one (derived from its vector space structure) and which is useful for control.

In this example we define a Lie group law of composition, construct a transverse
function around € € R®, define an auxiliary system and set the error signal as in
(3.8), and then we obtain the error dynamics. Then we produce a feedback function
that renders the identity element € asymptotically stable for the error dynamics. This
ensures practical stabilization of the chained form system towards the identity e. We
also present a numerical simulation which illustrates the performance of the feedback

control law.

Consider the chained form system

i’l = U
jfg = U3
I"g = U1T2
which can be written as
T =u X1 () + ue Xo(7) (3.10)
where X, X, are vector fields on R® with expressions in coordinates z = (21, T2, x3)
given by
0 0 0
1(1’) Il i +$2 axg xa 2(37) 8372 N

The configuration manifold R?* can be endowed with a group multiplication 7i : R® x

R* — R that turns it into a Lie group, by setting, for every z,y in R?,
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r1+ %
ﬁ(xa y) = ) + Yo
T3 + Y3 + T2l

The inverse of an element z in R?, and the identity element € are given respectively

by

x = —X and €=
—T3 + T1Z2
Next, let us verify that the vector fields X; and X5 are left-invariant with respect to
the group composition defined above. For any x in R, the left translation by z is
defined by Zx(y) = 7i(z,y) for all y € R*, so the tangent map associated to L, at Y,
ie. Tyzx T,R* — T3 (y)RS, is represented by

1
T,L,=| 0

T2

S = O
_ o O

Given v in Ty]R?’, from its expression in coordinates we shall omit the base coordinates,

writing only the fiber coordinates (vy, vq, v3). Thus Tyfx(v) is given by

1 0 0 U1 U1
T,L,(v) = 0 1 0 Vs = Uy ,
T 0 1 V3 ToU1 + U3
so one has
1 1
Xl(Lx(y)) = 0 ) TyLw<X1(y)) =TyL, 0 = 0
To + Yo Y2 To + Yo
and
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o
= O
(e}

o
o
o

Therefore, for every z,y in R Xl(zx(y)) = Tyzx(Xi(y)) for i = 1,2, i.e. both X;

and X, are left-invariant with respect the group multiplication /.

The Lie bracket of X; and Xs, [X7, X5], is given by

0
043
therefore the tangent space of R® at €, T:R?, is generated by linear combinations of
Xi(e), Xa(e) and [X;, Xs|(€). Hence System (3.10) satisfies the LARC at e.

The set of linearly independent, left-invariant, control vector fields is { X7, X5},
thus m = 2. The vectors &, & and &; in T:R?, associated with X, X, and [X1, Xo],

respectively, are

[X1>X2] =

0
G=Xi@=[0], &L=X0@=|1][, &=Xs)=] 0
0 —1

The dimension of the Lie algebra spanned by {X;, Xy} is n = 3, g = Lie({{1,&}) =
spang ({&1,&2,&3}), since every Lie bracket involving three or more vectors equals zero.

Now let us obtain the subspaces {Gy. : k € N}. By construction we have

Gl = SpanR({gla 52}) G? = SpanR({gla §2a [617 62]})7

notice that Go = g, hence K = 2.
The ordered set {£1,&2,&3} (&3 = [€1,&e]) with & < & iff ¢ < 4, is an ordered basis for
g. One checks that

G = spang{&1, &2} Gy = spang{&1, &2, &3}

Take k =2 and 2 = dim(G;) < i < dim(Gy) = 3, i.e. i = 3. Next consider mappings
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A p {3} — {1,2,3} defined by A\(3) =1 and p(3) = 2. Hence

§ = [fA(B)afp(S)] = [51,52]-

The set {£1,£2,&3}, in addition to the mappings A and p, define a graded basis for
g. We may consider the weight vector (rq,79,73) = (1,1,2), since &1,& € G and
& € Go\Gh.

Take (U,0) to be a coordinate chart for T, for example U = S'\{(0,1)} and
0((p1,p2)) = 2arctan (%). Let ¢ > 0 and f: T — R® be defined by

f(0) =exp (57“(3) sin(@)X@(g) + £"e® cos(G)X§P(3)) )

Thus f(0) = exp(Xp), where

Xo(z) = e™®sin(0)Xe,, (z) + 7@ cos(0) X, ()

0
= esin(d)| 0 | +ecos(f) | 1
i) 0

and therefore, the vector field Xy given in coordinates is

esin(0)
Xo(w) = | ecos(h)

esin(0) xo

f(8) equals the solution of the differential equation & = Xy(x) at time ¢ = 1 and with

initial condition zg = e. Therefore

£(6) = (g sin(6), = cos(6), i £ in(2 e)) | (3.11)

Figure 3.1 shows the plot of f with € = 1, together with the vector fields X; and X,
evaluated at f(#) for some 0 € T and Ty f(w) for some w € TyT.
We define the error signal z by
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Z2

Figure 3.1: Plot of f (Equation 3.11).

x1 — € sin(f)
z =iz, f(0)7Y) = 2y — e cos(f)
Ty + 1 e2sin(26) — zo £ sin(h)
where 6 € T is the state of the auxiliary system 6 = .
According to (3.9), the error dynamics is
u; — ae cos(f)
zZ= us + ae sin(6)
U120 + ue cos(f) — e sin(B)us — ae cos(f)z — 1 ae?

which can be rewritten, in matrix notation, as

1 0 —e cos(f) Uy
z = 0 1 e sin(0) Us
z+ecos(f) —esin(f) —e cos(f)z — ;€ o

Consider the vector field Z € I'(TR?) defined by Z(z) = —kz for z € R® with k a
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strictly positive real. Clearly this vector field has € as an exponentially stable point.
Let u = (uq, ug, ). Then the feedback function u(z, #) needed to impose a closed-loop

error dynamics of the form Z = Z(z) is

-1

1 0 —e cos(0) 2

u(z,0) = —k 0 1 e sin(0) 29

z +ecos(f) —esin(f) —e cos(0)z — ;€ 23

or, more explicitly,
—cos(0)zp — e cos(20) Lesin(26)  cos(d) 21
k
u(z,0) = —2 - sin(f)z + 3 € sin(26) e cos(260) — sin() 2 (3.12)

—1 (29 + ¢ cos(0)) sin(6) g1 23

A numerical simulation of the chained form system with feedback control (3.12)
was performed. The initial condition is zp = (—2.5,0.6,—1.5), the controller gain
k = —1.3, and the value of ¢ is 0.25. Figure 3.2 presents plots of the trajectories of
the chained form system and the trajectories of the error system. Figure 3.3 shows
the time-history of the control input defined by (3.12).

One notes from Figure 3.2 that the error trajectories approach zero as t increases
and, according to (3.8), the trajectories of the chained form system approach f(6(t))
as t increases, indeed the state = converges to a given fixed configuration near f(0).
This behavior can be observed in the plot of the system trajectories. The image of f
can be modified by adjusting the value of ¢, the smaller the value of ¢, the nearer the
system trajectories will be to zero.

In this chapter we have recalled the control technique proposed by Morin and
Samson to stabilize driftless controllable systems. We applied this technique to con-
trol the chained form system equivalent, among others systems, to the unicycle-type
robot. The chained form system is a system whose control vector fields satisfy acces-

sibility, and in spite of its simplicity is a system that satisfies Brockett’s condition,
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Chained form system state (z1, 2, x3)

Error state (z1, 22, 23)

0.5F

x1

€3 T2

—05kF

-15

25 L L L L L L L -3 L L
0 4 5 6 7 8 0 1 2

3 3
Time index Time

L
4

5
index

Figure 3.2: Plots of the state of the controlled Chained Form System and of the error
function respectively.

Control input (u1, ug, o)

12

10

(67

Uz

Uy

L L L L
4 5 6 7 8

3
Time index

L L
0 1 2

Figure 3.3: Plot of the control input (3.12) applied.
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which means that it is a tough stabilization problem. The following chapter deals
with second-order systems whose control fields alone do not generate the accessibility

distribution. Examples of this systems are vastly found in mechanical systems.
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Chapter 4

Vertically transverse functions and

their application to control

This chapter contains the main contributions of this thesis, among which the
characterization of certain functions we choose to call vertically transverse functions.
These functions, based on the transverse functions proposed by Morin and Samson,
generalize the property of transversality for second-order systems as we will show
later. A possible application of the use of this newly characterized property in the

control of second-order systems evolving on Lie groups is outlined.

4.1. Introduction

Now we have enough mathematical background to state the problem in more
detail. We have already recalled the transverse function control approach proposed
by Morin and Samson to control driftless controllable systems. As remarked earlier,
this control technique can deal with two classical control problems, point stabilization

and trajectory tracking for systems of the form

= f(x,t)+ Zuzgz(x)

where g1, ..., g, represent smooth vector fields on a smooth manifold M and f is a

time-varying smooth vector field defined on M (f may represent possibly null additive
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disturbances to the system).

In order to use this approach it is necessary that the controlled vector fields g1, ..., gn
ensure local accessibility at the desired stabilization point (or, in the case of trajectory
tracking, in a subset of M). As a result, this approach cannot be directly applied to
systems in which the drift term f is essential to ensure local accessibility.

Consider now a second-order system

o = D(v) + Z w X () (4.1)

where v : [ — T'M is a curve on the tangent bundle of a smooth manifold M, D is
a smooth, second-order vector field on TM, and X4, ..., X,, are smooth vector fields
on M (recall that if X € T(T'M) then X' € I(TTM)).

Assume that the set { X1, ..., X,,} satisfies the Lie Algebra Rank Condition at my(v)
for some v € TM. Note that the Lie Algebra spanned by {XHt ... X5t cannot
generate the tangent space of T'M at v, therefore the drift term D of system (4.1) is
essential to attain local accessibility. However, as we do not have control over the drift
vector field it is not clear how to proceed to obtain stabilization to a given trajectory
by means of the transverse function control approach.

In particular, one cannot apply the approach to System (4.1) since the control
vector fields do not satisfy the LARC at the desired stabilization point. The objective
then, is to provide an extension of the transverse function formalism to this class of
systems.

Although the class of systems considered has a given structure and this apparently
restricts the applicability of the approach proposed in this thesis, it is important to
notice that it encompasses a wide class of second-order systems. For example, a

subclass of systems of the form (4.1) are simple mechanical control systems,

Vig=—-GodV(g)+ ) u'G'oF(q) (4.2)
=1

where ¢ : I — @ is a curve on the configuration manifold @) (positions and orienta-
tions), G* is the canonical map T*@Q — T'Q, associated with the Riemannian metric

G, V € C>(Q) represents a potential energy function, F* (i = 1,...,m) are smooth
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1-forms physically representing forces or torques and finally V is the connection as-
sociated to the Riemannian metric G.

Simple mechanical control systems subject to constrains have essentially the same
structure as (4.2), except that V no longer represents the Levi-Civita connection,
and the vector fields are modified depending on the constrain codistribution [10].

Equation (4.2) can be recast as a system evolving on 7'M with dynamics

=8, — (G o dV) ™ (v) + > (G o F') M (v),
i=1
where S is the geodesic spray associated with the connection V. It is clear that if
we take D = S — (G¥ o dV)!" and X; = G*o F* (i = 1,...,m), the class of simple
mechanical control systems (both, subject and not subject to constrains) fits into
Equation (4.1). The cases m = dim(M) (fully actuated mechanical system) and

m < dim(M) (underactuated mechanical system), are also included.

4.2. Vertically transverse functions

Having already discussed the transversality property for functions with respect to
a set of vector fields in Chapter 3, we show how the tangent mappings associated with
transverse functions define vertically transverse functions, which may be regarded as

second-order generalizations of transverse functions for second-order systems.

Prior to defining vertical transversality, let us present the following lemma regard-
ing the way the tangent tangent mapping of a differentiable function acts on vertical

vectors.

Lemma 1 Let M and N denote smooth manifolds and let f : M — N be a C*
mapping. Then:

1. TTf maps vertical vectors in TT M into vertical vectors in TTN.

2. For every v,w € TM such that mp(v) = 7 (w) we have

TT f(lift (v, w)) = lft(T f(v), T f(w)).
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Proof: (1.) By basic notions regarding tangent bundles and mappings, the following

diagram commutes
Tf

™ TN
™M l \LWN
M ! N

that is, fomy = my o T'f. As a consequence, T(f oy ) = T(mny o Tf) and, by the

chain rule, we have T'f o T’y = Ty o TT f, i.e. the following diagram commutes

TTf
TTM TTN
T l J{TT(N
Tf
TM TN

Now let v € TM and & € T,TMY, thus Tf o Tmp(§) = Ty o TT f(E). Since € is
vertical it satisfies T'my(€) = 0 and, by the linearity of T'f we have TmyoTT f(£) =0,
therefore TT f(§) € TrpwyTNY™, i.e. TT f(§) is vertical, as stated.

(2.) Let v,w € TM be such that my(v) = mp(w). Define the curve 7,, : R —
TrpiyM as vy (t) = v+ tw for each t € R. Thus
J

M
0
By virtue of the linearity of T}, f for every p in M one has

lift(v, w) = Toypw (E

Tf © ’)/mw(t) = Tf(’U + tw) = Tf(v) + tTf(lU) = ’VTf(v),Tf(w)(t) fort e R

ie. TfoYw = Vrs) ) thus T(Tf o vpw) = Tyrsw)riw), then TTf o Ty, =
Ty7f(w),7f(w)- In particular we have

0 0
TTf © To%,w (E 0> = TOVTf(fU),Tf(w) (E ) .
Therefore T'T f (lift(v, w)) = lift(T f (v), T f(w)) as required. [

Lemma 2 Let M and N be differentiable manifolds and let f € C*(M; N), then the
Liouwville vector field on T'M s T f-related to the Liouville vector field on T'N.
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Proof: Let C denote the Liouville vector field on TM and C' the Liouville vector
field on TN. Recall that C is a vector field on TM defined by C(v) = lift(v,v) for
all v € TM (an analogous definition holds for C'). For C to be T f-related to C' the

following diagram must commute

s
TM TN
él ic

TTM ——7—TTN,

i.e. one must have CoTf =TT f o C. This is equivalent, using the definition of
the Liouville vector field, to lift(T'f(-), Tf(-)) = TT f(lift(-,-)). But, by virtue of
Lemma (1), we have lift(T'f(v), T f(w)) = TT f(lift(v, w)) for every v,w in TM, so,
in particular lift(T'f(v), T f(v)) = TT f(lift(v, v)). Therefore C is T f-related to C. W

Let us define the vertical transversality condition.

Definition 7 Let M be a n-dimensional manifold and {X, ..., X,,} a set of vertical
vector fields defined on TM. A bundle map F : TT" — TM (k = n—m) such that

Ty TMY™ = T, F((T,TT)"™) + spang ({ X1 (F()), .., Xm(F(w))})

is said to be vertically transverse for the set {Xy,..., X, }.

Let M be a smooth n-dimensional manifold, and X5, ..., X,, smooth vector fields

on M such that the set {Xi,...,X,,} satisfies the Lie Algebra Rank Condition
(LARC) at a given point p € M, i.e.

T,M ={X,: X € Lie{X1,..., Xn})}

If fis a transverse function for {Xj,...,X,,} near p then Tf is vertically trans-
verse for the set of the vertically lifted vector fields i.e. the distribution spanned
by {XIift .. XE®Y along the image of T'f, together with the image by TTf of the
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vertical subbundle (TTT")"* (m < k < n), generates the vertical space of TTM

along the image of T'f. Let us proceed to formally state this proposition.

Proposition 4 Let {X1,...,X,,} be a set of smooth vector fields on M satisfying
the LARC at p € M. Let f: T" — M be a transverse function for {Xq,..., X}
near p so that, for every 6 € T",

TroyM = Tp f(TyT") + spang ({ X1(f(0)), - - -, X (f(0))})- (4.3)

Then Tf is vertically transverse for { X1 .. XU e for every w € TT",

Trj TMY = TLTF(TLTT)) + spang ({X™(Tf(@)), ..., X (TF(@))}).
(4.4)
Furthermore, if f is such that the sum in (4.3) is direct (k = n —m), then the sum
n (4.4) is also direct.

Proof: Let w € TyT" with # € T", and assume that v € TTf(w)TM"ert. Since v is
vertical, there exists v € Ty M such that lift(7 f(w),v) = v. Making use of (4.3)

one concludes that there exist @ € TT" and real numbers a', ..., a™ such that

U—Tgf +ZazX

Then

v = lift (Tf Tof(@ +Za"X )

Since lift(7 f(w), -) is linear one has

v =lft(Tf(w), Tof(@ +Zahft Tf(w), Xi(f(9))),

by Lemma 1-(2) and by the definition of the lift of a vector field one has

v=T,Tf(lift(w, ) + > a'X"(Tf(w))

=1
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given that lift(w,) € (T,,7T")""* this concludes the first part of the proof.

Now assume that the sum in (4.3) is direct, i.e.

TroyM = Tof(TyT"™™) @ spang ({ X1(f(0)), - - -, X (f(0))}) (4.5)

and suppose that there exists v € Ty T MY such that

v € LTF((TLTT™ ™)) Nspang ({X(Tf (), .., Xy (Tf(@))})-

We shall show that the unique v satisfying this is v = 0. Thus there exist a €

(T, TT""™)v* and real numbers a', ..., a™ such that

v=TTf(x Z XU f (W
Given that « is vertical, o = lift(w, ) for some @ € T,T"™™. Then v = TT f(«a) =

TT f(lift(w,w)) and by Lemma 1-(2) one obtains v = lift(T'f(w),Tf(@)). On the
other hand

m

Z ztht (Tf(w = Zai Lift (T f(w), Xi(f(6)))
= lift (Tf(w),ZGiXi(f(g))> ;

thus 1ift(7f(w), Tf(@)) = lift (Tf(w), > 1", a'X;(f(6))). The map lift(T f(w),-) is

linear and injective, then

Za%x Tf(@)

However this in contradiction with the assumption that f satisfies (4.5), thus
o atXi(f(0) = Tf(@) = 0. From v = lift(Tf(w),Tf(@)) and using linearity
of the mapping lift(7 f(w),-) it is easy to deduce that v = 0. This concludes the
proof. [ |
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4.3. Application of vertically transverse functions to

control

In this section we inspect a possible application of vertically transverse functions
to a class of second-order systems evolving on Lie groups. We focus on this class
of systems since a large range of second-order and mechanical systems are naturally
modeled as systems on Lie groups. For instance, mechanical systems which usually
arise in physical applications and evolve on Lie groups are rigid bodies in space, cart-
like vehicles, space and underwater robots which, in addition, may present some sort of
invariance with respect the Lie group operation. Some examples are the hovercraft,
the PPR manipulator, a rigid body in R? or R*  the unicycle-type robot and the
snakeboard [10], [7].

Consider a system with dynamics

o = D(v) + Z w X () (4.6)

where v : I — TG is a curve on the tangent space of an n-dimensional Lie group
G, D € T(TTGQ) is a second-order vector field, and X; € T'(TG) (i = 1,...,m) are

linearly independent, left-invariant, smooth vector fields on G such that

Lie({XLE: s aXm,E}) =g

Given these conditions we can construct a transverse function f : T"™" — G,

following the procedure recalled in Section 3.2 of Chapter 3, such that

Ty TG = TUTF(TLTT")) & spang ({XI(T (), .., XS(T f(w))})
(4.7)
The next step is to dynamically extend the system by adding an auxiliary sys-
tem evolving on TTT" ™. To do this we select a global frame for (TTT" ™)vet,
{Q,...,Q,}, consisting of vertical vector fields Q; € T(TTT"™) (i =1,...,n—m),

i.e., for every w € TT"™™
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(T, TT" )" = spang ({1 (W), - . ., Qum (W) }).

The existence of such a global frame on TTT" ™ is assured by the triviality of
TTT" ™ as a vector bundle, a consequence of the triviality of TT"™™.

The proposed auxiliary system is then
O=Ay+ Y wi, (4.8)

where A € TTT" ™ is an arbitrary, smooth, second-order, vector field. Then we
define an error signal z as the group composition of the original system state and the

auxiliary system state, namely

2= pv, Tf(w)™). (4.9)

Roughly speaking, this error function is used to quantify the error difference between
the state of the system and the image of the auxiliary system by T'f. Let us remark
that one can use alternative error expressions, e.g. z = Tf(w) - v, for which the
approach leads to analogous results.

At this stage one may wonder what the dynamics governing the evolution of the
error is. Prior to continuing, let us present some results that will be useful later
on. The first is a lemma that concerns the induced left-invariance of vertically lifted

left-invariant vector fields.

Lemma 3 Let G be a Lie group and let X € I'(T'G) be a vector field on G. If X is
left invariant, then X' is a left-invariant vector field on the tangent Lie group TG

(with respect to the Lie group operation induced by the one on G).

~

Proof: We assume that for every ¢g,h € G, X, = T),L,(X),). We shall prove that
Xt (pw) = Top Ly, (X (w)) for all v,w in TG.

Consider the curve 7, X (wy O TG defined by 7, x
t € R, then

Dt w + E X ) With

mg(w)
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0
or
0
or

Tva(Xlift (w)) = Tva o To')/w,X,rG(w) (

)
)

= TO(LU 0] ’}/w,X.,rG(w)) <

However,

Lyo ’Yw,X,rG(w) (t) = /’L(Uv w + tXTFG(w))
= Twc(v)}jﬂc(w) (v) + TWG(W)EWG(”) (w + tXWG(w))A
= Trg) Brcw) (V) + Trg ) Lag ) (W) + 1 Trg ) L (0) (X ()

~

= (v, w) + T () Ly (v) X ()

Given that X is left-invariant one has

Ly oY X, () = vw 41 X @)me(w)
= w+ tXﬂG(Uw)

Therefore L, o Voo, X ) (t) = Vow, X r o) (t) for all t € R; thus

)

: 0
TLoX0) = T, 37

= Tift (vw, Xrp(ow))
_ Xlift (’Uw>,

which shows that X' is left-invariant with respect p. ]

Proposition 5 Let G be a Lie group and TG its tangent Lie group. Let X € T'(TTG)
be a complete second-order vector field and assume thatY € T'(TTGQG) is a second-order
vector field defined along the curve w : I — TG by w(t) = Y. Then:

1. If v: 1 — TG is an integral curve of X, then the curve z(t) = v(t) - w'(t)
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satisfies, for everyt € I,

A(t) = Toiy B (Ko = T Letny (Yuw)) - (4.10)

2. The expression (4.10) represents a (non-autonomous) second-order differential

equation on TG.

Proof: (1.) Using Proposition 2 in Chapter 2 one has that if z equals v(t) - w™!(¢)
then

£(t) = T Rum10(Xot) + Tumro Loo (Yor1)- (4.11)

Now, from Proposition 3 in Chapter 2 one knows that if Y is the vector field along

the curve t — w™1(t) defined by ?w—l( — Lw1(t), then the expression for Y is given

dt
by

Y1) = =TeLy-1() © Ty Ruw-10)(Yo)-

Substituting this expression in (4.11), using the associativity of left translations, in

addition to the commutativity of right and left translations, one gets

2(1t) = TowyRu-10)(Xow) + T Loy (= TeLu1(t) © Tuwiy R0y (Yo(n)))
= Ty Ru-10)(Xow) = Tw-r(y Loy © TeLu1t) © Ty Bu-1(t)(Yuw)
= ToyRu—14)( X)) = TeLow=1(2) © Ty R0 (Yurr))
= T luw1)(Xow) = To Bu-1@) © T Low-10 (Vo)

= T Ru-10) (Xow — Tw<t>Lv-w—1<t)<Yw<t>))-

Xv ()
Xo(

v(t)

Recalling that z = v - w™?! this yields

2 =Ty Ruw10ty (Xoy = Ty Loy Yun))

(2.) Given w € TG such that w = w(t) for some t € I, we define a map Zz : TG —
TTG by
Za(z) = Tz.@Rigﬂ (Xz@ — T@LZ(Y@))
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From the latter expression it is straightforward to show that for every ¢ € I and every
z € TG one has g o Zz(z) = z therefore Z is a vector field defined on T'G along z.

We need to check that Tng o Z3 = idrg in order to show that Zg represents a
second-order differential equation. Note that, for any o € T'G, the following diagrams

commute

7G\L R \L G 7G\L \L7G
Lﬂ' a lz‘rr «
G G G G G > G

since for every 3 € TG, one has

7 0 Lo(B) = mg(a - ) = 16(a) - 76(8) = Lug(a)(16(8)) = Lag(a) © 7a(8),

and, likewise for the right translation,

76 0 Ra(B) = (B - @) = 16(B) - 76(a) = Rug(s)(m6(q0)) = Rag () 0 T ().

Hence T 0 TLy = Ty © T and Trg 0 TRy = TRy © Trig.

By using the relations found above, for any z € T'G, one has

TrngoZz(z) = TrngoT,sRg— (X —TsL.(Ys))
= Tnc(z-a)ém(m—l) oT.ama (Xew — TeL:.(Ya))
= Trpei) RBro ) (Toama(Xe) — Togma o ToL.(Yy))
= Tng(z.m)ﬁm(w—l) <Tz-1Tz7TG(Xz-ﬁ> — i) Lng(2) © TWTG(Y@))

As a consequence of the second-order property of X and Y as vector fields

Tz.zgﬂ'g(Xz.{g) =z-w and Tﬁ}ﬂ'G(Yﬁj) = w.

Moreover, using the definition for the group multiplication in TG (Proposition 1 in
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Chapter 2) for z,w € TG one has

2+ W = T () Beg(@) (2) + T (@) L () (W),

thus

T7TG o Z@(Z) = TWG(z.@)Eﬂ-G({E—l) (Z SW — TwG(@)Ewg(z) (7:[7))

~

= Troza) Bro@) (Twc;(z)Rm(m)(Z)) :

~

From (R, @) " = ﬁm(@q) (Chapter 2), one deduces that T'ng o Zgz(z) = z, as
stated. [

In order to obtain an expression for the dynamics of (4.9) one applies the result
of Proposition 5 to v+ (T'fow)™ withv : I — TG and Tfow : [ — TG
representing, respectively, the state of the system and the the state of the auxiliary
system composed with T'f, the tangent map of a transverse function f.

The vector fields along the curves v and T'f o w are, respectively,

X, =D, + Z WX and  Yrpe = TLTf (Aw + Z wiQi,w> :
=1

=1

Then the error dynamics of 2 = v - (T'f ow)™! is

z = TURTf(w)71 (Xv - TTf(w)LZ(YTf(W)))

= T,Rpp (DU + Y WX — Trp)L. o TTf <Aw +y wa>)
=1

i=1

If we group the terms corresponding to drifts, i.e. D and A, one gets

¢ = TRy (Do = Trjwlz o TLTf(AL))
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+ T, Ry <Zu2X1‘ﬁ Trsy L. o T,Tf (Zwigi,w»

=1

(4.12)

As a consequence of Lemma 3, one has that X} is left-invariant (i = 1,...,m). In
particular, X! = Tpp) L.(X™(T f(w))), since z = v - Tf(w) " Thus

¢ = TRyt (Do = Trpwl: o TLT(AL))

+ TRy (Zu TrywyL: (X]™(Tf(w)))

= Try L. o TLTS <Z wﬂw)> (4.13)

i=1

= ToRpsu-t (Do = Trpw Lz o TLTF(AL))

+ TRy © TrpeLe (Z u' XPT f(w)) = TLTf (Z w9w>)
i=1 i=1

+ T, Ry )1 © Trs) (Zu XET f(w Zw T,Tf( W))

By (4.9) one has v = z- T f(w), then the expression one gets for the error dynamics is

¢ = TrpRrpw (Darpw) = TriwL: o TLTf(AL))

m

+ Tty o) Ry i1 © Trpin L (Z ut XI(T f(w)) (4.14)

=1
=Y W' TTf (Qw)>
=1

The differential equation (4.14) is second-order as a consequence of Proposition 5.

This will be the error dynamics we shall use in the sequel.

For second-order systems, the control inputs can only shape the second-order
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time-derivatives of the base trajectories. When dealing with mechanical systems,
this translates into acting only upon accelerations and not upon configurations or
velocities. Since the image of TT'f, together with the controlled vector fields along
the image of T'f span the vertical subbundle, it is possible to use this property to
design a feedback law that imposes any desired error dynamics. Let us make this

statement precise.

Theorem 1 Given a second-order vector field Zy € I'(TTG), there exists a smooth
feedback law o = (a*,...,a") : TG x TT"™™ — R" such that the error dynam-
ics (4.14) with control inputs u'(z,w) = a'(z,w) (i = 1,...,m) and w(z,w) =

Atz w) (j=1,...,n—1) writes as z = Zy(2).

Proof: To find such feedback function a one can proceed by setting the right-

hand-side of (4.14) equal to Zy(z) and solving the resulting equation for u!,... u™,

wl, . wv™

Define a vector field D, € I'(TTG) (w € TT"™™) by

in terms of z and w.

Dy:z— Tz~Tf(w)’1RTf(w)_l (Dz-Tf(w)*l — Trfwl: o Twa(Aw)> .

Then (4.14) becomes

¢ =Do(2) + Torp) Ry s © Trocw L (Z u X = Y W' TLTf (Qw)> :
=1 i=1

by setting this expression equal to Z;(z) one gets:

Za(z) = Du(z) =
Tz pw) Ry © Triw) Le (Z?ll w X% — i W TLTf (Qi,w))

Yo X — et WL Qi) =

i, Tf(w)
(Torp) Rrpoyt © Trpw)La) " (Za(z) — Du(2))
= sz(w)Lz*1 o TzRTf(w)<Zd(z) - Dw(z))
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From the proof of Proposition 5-(2) one has Trg o T'L, = TZ o(a) © T'mg and T o
TR, =T R y o ', from which one easily finds that for every a,b € T'G,

1. TrgoTLyo TRy = TLrygy 0 TRega) 0 T
2. Trg o TR, 0TLy=TRyy 0 TLyup o T

Using the equation in 2., together with the fact that X/® and Q; (i =1,...,m; j =

1,...,n —m) are vertical, one deduces that

m

TRys-1 0 TLY w'XIH Z w'T,Tf(Q.))

i=1

is vertical. The latter assertion, coupled to the fact that (4.14) is second-order,
implies that D, is second-order for every w € TT" ™. Now, using 1. one deduces
that TL,-1 o T Rypy(Z4(2) — Dy(2)) is vertical for every z € TG.

Making use of Proposition 4 and in particular of
T TG = TTF((TLTT™™)) & spang({XI(Tf(w)), ..., XE(TF(w))}),

together with the assumption that {€,...,,,} is a global frame for (TTT"™)vert,
we conclude that there exist a mapping « : TG x TT"™™ — R" such that, for every
(z,w) e TG x TT"™™,

>y al(z,w) th%f(w) Dot (2, w) TLT f(Qiw) =

(4.15)
TerjyLz-r 0 TzRwa)(Zd(Z) — Du(2)).

Since left and right translations and T'f are smooth, their respective tangent maps
are also smooth, and as the vector fields Zy, D,,, X! and Q; are smooth we conclude

that « given by the above equation is also smooth. ]

Given the latter theorem one is able to impose any desired dynamics to the error, in
particular one would typically aim at having the error converge to zero, the identity
element in TG. To do this one selects for Z; a vector field which has zero as an
asymptotically stable point. This ensures that, in closed-loop, the state v of system

(4.6) converges to the image by T'f of w(t), the state of the auxiliary system (4.8).
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4.4. Zero-dynamics of the closed-loop system

Suppose that we select for Z; in (4.15) a vector field which has zero as an expo-
nentially stable point. Let us examine the remaining dynamics of the original and
auxiliary system when the error z equals zero. Although z may never reach zero,
when the initial conditions of z are different from zero, this allows us to study the
long-term dynamics of the total feedback system.

Assume that the vector fields D in (4.6), and A in (4.8), are semisprays (several
simple mechanical systems have a semispray as drift term). By applying the feedback
law (4.15) one assures that the error dynamics (4.14) is of the form z = Z;(z). Let
to € R, suppose that z(ty) = 0 = e, then 2(t) = Z;(0) = 0 for all t > to. Thus

0 = Torpew)Rrpewt (Dersw) = TriwLe o TLT f(AL)

n—m

+ Terf) By g1 © Trpw)Le <Z u X ey — ) W TS (Qi,w)) ;
=1

i=1

where u : TT"™™ — R™ and w : TT" ™ — R" ™. Thus the zero-dynamics is

Dryw) + Z u’ X%f(w) —T.Tf(A,) — Z W T,Tf (Qi) =0,
=1

i=1

which can be written as

DoTf+ ) wXMoTf=TTfoA+ Y w'TTfoQ (4.16)
=1 =1
From (4.16) one observes that the zero-dynamics of the auxiliary system entirely
governs the zero-dynamics of the target system.
Let w be in TT"™ ™, then there exist an open subset V, of TG, an open neighbor-
hood U, of w and map u € C*(V,;R™) with T'f(U,) C V,, such that the following

diagram commutes [20]
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Tf
v, — oy,
Rm

Therefore (4.16) can be written as

DoTf+ (u' X™)oTf=TTfoA+w TTf oS, (4.17)

withi=1,...,mand j =1,...,n —m. Define Y to be T f-related to D + u® X}

i.e. Y is a vector field defined on TT" "™ such that the following diagram commutes

T
r-m — TG
ffl lD p s i
TTT" " = TTG

Thus (4.17) is equivalent to

(D+a'X;™)oTf = TTfoA+w TTf ol
TTfoY = TTfoA+w TTfo;.

Thus, by virtue of the linearity of T'T'f on fibers, one obtains

Y =A+uw' Q. (4.18)

-~

By applying [C, -] to both members of (4.18) one gets

C.Y] = [C,A+w Q]
— [C,Al+C,w’ Q]
= A+ [C, Q] + Cw))Q,
= A —w Q4+ Cw)Q, (4.19)
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since A is a semispray (thus [C,A] = A) and € is vertical (thus [G,Qj] = —);),
j=1,...,n—m. By applying TT f to (4.19) one has

TTfo[C,Y]=TTfoA—w TTfoQ;+C(w)TTf o

Using that C is T f-related to C' (Lemma 2) in addition to the fact that [C,Y] is
T f-related to [C, D + @' X!™] since Y is T f-related to D + ¢ X (Chapter 2) one

obtains
(C, D+ XM oTf=TTfoA+ ((7(wj) - wj> TTfoQ,
Equivalently

(C,D]oTf +[C,a X' 0T f =
TTfoA + (é(wﬂ') _ w) TTf o,

[C.D]oTf+ (u'-[C, X)) oTf+ (Ca")- XI)oTf =
TTfoA + (é(wf) - wj> TTf o,

Thus, since D is a semispray and X! is vertical (i = 1,...,m), one obtains

DOTf— (ﬁz _X}ift) OTf+ (C(ﬂz) ,leift) on —
TTfoA + (é(wﬂ') _ w) TTfoQ,,

DoTf + ((C@) — ) - XI") o T =
TTfoA + (é(wf) - wj> TTf o,

le.
DoTf~TTfoA = (Cluw))—w!) TTf oS~ ((C(") ') - XI") o T},
but, from (4.17), DoTf —TTfo A =w/TTfoQ; — (u’  X/™) o Tf, so one has
(Cw’) = 20") TTf 0 0y = (C(I') = 20") XM o Tf =0
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Given that f satisfies (4.7), this equation implies that C'(w?) = 2w’ and C(i?) =
2u’, i.e. (using (4.19))

C.A+W/ Q)] = A—w Q;+Cw))Q;
= A—w Q;+ 2w Q;
= A+1UJQ]

The zero-dynamics of the auxiliary system A + w’ §); is second-order given that A
is second-order and €2, is vertical (j = 1...,n —m). This, in addition to [a,A +
w! Qj] = A+ w? Q;, shows that the zero-dynamics has a semispray structure under

the assumption that D and A are semisprays.
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Chapter 5

Examples of the application of

vertically transverse functions

The main purpose of this chapter is to illustrate how the control technique pro-
posed in this thesis, which makes use of vertically transverse functions, is applied to
certain specific systems. The description of each system is given along with a detailed

application of the method and a numerical simulation.

5.1. The ENDI system

5.1.1. System description

The ENDI system (ENDI stands for Fztended Nonholonomic Double Integrator)
arises when one includes an integrator in series with each of the inputs of the Brock-
ett’s nonholonomic integrator. This latter system does not meet Brockett’s necessary
condition, i.e. it can not be stabilized to any equilibrium point by means of continuous
feedback functions depending only on the state. Brockett’s nonholonomic integrator

is of the form

Z)l = W
Yo = Up
Us = U1Y2 — U2Y-
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where y = (y1, 2, y3) € R* and u = (uy, uy) € R% The ENDI system arises when one
includes an integrator in series with each of the inputs of the Brockett’s nonholonomic

integrator.

ho= w
Yo = U (5.1)
Ys = U1Y2 — Y2l

Taking the third equation of (5.1) and computing its time-derivative one gets {j3 =

u1ys — uzy;. Consider then the following system

Zi‘l = U
i‘2 = u2 (52)
T3 = U1T2 — U1,
where z = (21, 79, 23) € R®.
T

Uy oO—1

U2 O—ﬂ‘W

Figure 5.1: The ENDI system.

Z1

I3

Z2

We refer, in the sequel, to this later system as the ENDI system which can be
sketched as in Figure 5.1. The trajectories of system (5.1) are the same than the

trajectories of system (5.2) whenever the initial condition of (5.2) is of the form

(20, Z0) = (Y10> Y20, Y305 Y105 Y20, 0)-

5.1.2. Application of the vertically transverse function approach

System (5.2) can be written as
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¥ =u1 X1(2) + us Xo(x) (5.3)

where z takes values in R? and X 1, X9 are vector fields on R? defined by

0 0 0 0
X = — — X = —| —11 —
1(1’) axl N + X2 81‘3 ma 2('1;) afEQ N X 0$3 i
The Lie bracket of X; and X5 is given by
0
X, Xo| = —2—
[ 1 2] 8$37

hence the Lie Algebra generated by {Xi, Xo} is spang ({ X, Xo, [X1, Xo]}) since Lie
brackets involving three or more vector fields are identically zero. As a result
Lie({ X1, X5}) spans T,R* at every point 2 € R* therefore {X;, X,} satisfies the
Lie Algebra Rank Condition at every z € R®.

One can endow R?® with a Lie group law composition i defined by

T1+ Y
(e, y) = Ty + Yo for every z,y in R?,

T3+ Y3+ Tay1 — T1Y2

with inverse group operation defined by 27! = (—xy, —29, —23) for z € R®, and

identity element € = (0,0, 0).

The equation (v, w) = Tr_;(w) Rrys (w) (V) + Ty (w) Ly (o) (w) (Equation (2.8)) al-
lows one to explicitly find the Lie group composition in TR* associated with fi to
be

U1 + wq
V2 + W2

v3 + w3 + vow1 — VW2 5
Vo,we TR

(v, w)
V4 + Wy

Vs + Ws

Vg + W — W2V4 + W1V5 + VW4 — V1W5
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with inverse v — v™! = (—vy, —v9, —v3, —v4, —v5, —vg) and identity element e = 0.

Given z in R?, the left translation by z, Zx, is defined by
1+
Lo(y) = fi(z,y) = T + Yo for all y € R
T3 + Y3 + T2l — T1Y2
thus, the tangent map associated to ZJC at y € R?, ie. Tyzx TR — T7 R is
defined as

2(y)

Ty —XTq1 1

Let v = (v1,vs,v3) be in T,R?. Then Tyzx(v) is given by

1 0 0 (%1 U1
T,L,(v)=1]1 0 1 0 vy | = U2
o —I71 1 V3 ToU1 — T1Vg + V3

The vector fields previously defined

0
Xiy)=1 0 and  Xy(y) = 1
Y2 —U1

are left-invariant with respect to the group operation fi of R? since

1
X1<Ex<y>> = ( 0 )
To + Y2
1 0 0
0
1

1 1
0 = 0
Yo To + Yo

T,L.(Xi(y)=| 0 1

To —I1
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and

0
Xo(Lo(y)) = 1 ,
—T1 — U1
1 0 0 0 0
T,L.(X:(y)=| 0o 1 o0 1 =
Ty —wx1 1 - —T — Y1

so that, for every z,y in R,

Xi(Lo(y) = T,Lo(Xi(y))  i=1,2.

Given that X; and X, are left-invariant, X1 and X1 are also left-invariant with
respect to pu according to result stated in Lemma 3 of Chapter 4. These vertically
lifted vector fields are defined in TR? by

: 0 0 . 0 0
X lift _ Y . x Lift - | _ _
=gl Tl KW= g TTag|
where we consider coordinates v = (z,4) on TR® naturally associated with the
coordinates .
The system (5.3) can be recast as a system on TR® by
v = S) + wy X1 (v) + ue X3 (v), (5.4)

where S is the second-order vector field defined by S(v) = 327 i; 2

Next we find a transverse function f : T — R® for X; and X, near €, following
the procedure reviewed in Chapter 3, which results in
e sin(0)
f:0— ] & cos(h)
0

The tangent map associated to f at 8 € T, Ty f : TyT — Tf(g)R3, is defined for each
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w = (0,0) in TyT by:

e sin(0)
e cos(0)
0
£6 cos(h)
—e 0 sin(h)

0

The transversality property of the map f is equivalent to the nonsingularity of the
matrix M whose columns are the components of the vector fields X; and X, evaluated
on the image of f, together with f’(0), i.e.

1 0 e cos(f)
M() = 0 1 —¢ sin(6)
e cos(f) —e sin(0) 0

One easily proves that det(M()) equals —e? for all @ € T and, given that ¢ is a
strictly positive real, the determinant of M is nonzero.

Now, we proceed to define the auxiliary second-order system on 7T

w=A,+w,
as

= +w

0
——— = SN——
w Ay Qu
le.
0 =w (5.5)

The error is defined as the product in TR? of the state v = (z, &) of System (5.3)
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and the inverse of the image by T'f of w = (6,6) (the latter being the state of the

auxiliary system (5.5)), i.e.

2 = (v, Tf(w) ™).

Carrying out the computations one finds the following expression for the error

vy — € sin(f)
vy — € cos(0)

v3 — va€ sin(0) + vie cos(6)
vy — B e cos(h)

vs + 0 ¢ sin(6)

e cos(0)vy — € sin(f)vs + vg — vab € cos(f) — v,0 e sin(h)

The error dynamics, obtained by differentiating the expression for the error z, is given
by (4.14)

z=B(z,w) + ZuiHi(z,w) (5.6)

=1

with ug = w,

Hi(z,w) = (0,0,0,1,0,2¢ cos(f) + z2),
Hy(z,w) = (0,0,0,0,1,—2¢ sin(#) — z1),
Hi(z,w) = (0,0,0,—¢ cos(f),e sin(f), —¢ cos(#)z — € sin(f)z; — &)

and
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24

<5

26
B(z,w) = 6% sin(6)

62e cos(6)

—20¢ sin(f)zy — 26 cos(8)z5 + 6% sin(0)z, — 6% cos(h)z

As we showed in Proposition 5 in Chapter 4, the error dynamics represents a
second-order differential equation. Consequently we can write it down taking the

second-time derivatives of (21, 22, 23), namely,

o
% 0%e sin(6)
Zo = 02¢ cos(6)
& b3(Z, 07 9)
(5.7)
0 —ecos(0) uy
+ 0 1 esin(6) U2
2e cos(f) + 22 —2esin(f) — 21 hsz(z,0) w

with bg(z,0,0) = —20¢ sin(f)z; — 20¢ cos(f)zs + 0% sin(f)z, — 6% cos(h)z, and
h33(z,0) = —¢ cos(0)zy — € sin(0)z; — &2

In order to construct a feedback function to make z converge to e, the identity
element in TR®  we take a second-order vector field S € T'(TTR®) which has e as

locally asymptotically stable point, for instance,

S, = (2’4, 25, 26, —k121 — kozy, —k122 — kozs, —k123 — k’226)

where the control gains k1, ky are strictly positive real numbers.
One obtains the feedback function (u(z,w),w(z,w)) by equating the right hand side
of (5.6) to S, and solving for (u;,us, us3), or equivalently, by equating the right hand
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side of (5.7) to Sg(z) and solving for (uq, us, w), where

—]{7121 — k'22’4
SH(Z) = —]{7122 — ]{ZQZ5

—kiz3 — oz

For every (z,w) in TR® x T'T there exists a solution (u1, us, w) due the nonsingularity

of the square matrix in (5.7), since for every z € TR* and # € T its determinant

equals 2. After simple manipulations we get

uy(z,6, 9) = k (COS(2 0)z; — sin(20)z9 — wiﬂz;),)
+ko (COS D (2924 — 2125 — 26) + c08(26) 24 — sin(2 €)z5>
+0 (8111(2 0)24 4 2 (cos(0))” z5 — fe s1n(9)>

us(2,0,0) = —ki (sin(20)z + cos(20)z — Silleﬂz‘rg)
—]{?2 @ (ZQZ4 — Z1%5 — ZG> + Sin(2 ‘9)24 + COS(2 0)25)
—0 (sin(2 0)z5 +2 (sin(f))* zy + 0 e 008(9))

w(z,0,0) = > <k:1 (2e cos(0)z; — 2¢ sin(0)zg — 23)
+ko ((.25 cos(0) + z9) z4 — (2 sin(f) + 21) 25 — 26)
+2¢e6 (sin(f)zy + cos(d )25)>

Using this feedback function z(t) = v - (T'f(w))~! tends to zero as ¢ tends to infinity.
Hence v(t) — T f(w(t)) as t — o0, therefore z(t) = mrs o v(t) — fompow(t) =
fo0(t),ie z(t) converge to the image by f of 6.
One easily verifies that
6=0

is the zero-dynamics of the auxiliary system. Thus 6 is bounded with a bound de-
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pending on the initial conditions.

The zero-dynamics of the auxiliary system governs the zero-dynamics of the target
system in (5.3) (Section 4.4 in Chapter 4), therefore & is bounded, and, since z(t) —
fol(t) ast — oo, v = (x,&) is bounded for the long-term behavior.

A numerical simulation of the closed-loop system with feedback control u =
(u1(z, 0, 9), us(z, 0, 9), w(z,0,0)) was performed. The initial condition is v = (x,2) =
(3.5,—-0.3,0.2,0.5,—0.1,0.0), the controller gains are k; = ks = 1.0, and the value of
¢ is 0.5. Figure 5.3 presents plots of the trajectories of the ENDI system and Figure

5.2 presents the evolution in time of the error and the control input applied.

Error signal z Feedback function u

L — L L
20 25 0 5 20 25

TR
Time index

Time index
Figure 5.2: Time histories of the error z and the control input u(z, 0, 9) respectively.

The error in Figure 5.2 tends to zero as the time increases. We also note (Figure
5.3) that the configuration variables and velocities of the system, after a transient,
seem to converge to a periodic motion. As a matter of fact the configuration variables

converge to a neighborhood which can be modified by changing the value of €.

5.2. PPR manipulator

5.2.1. System description

In this section we deal with the three link planar manipulator PPR, (PPR stands

for Prismatic-Prismatic-Revolute), in which the two first joints are actuated whereas
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ENDI system configuration (z1, z2, x3) ) ENDI system velocities (&1, @2, @3)

I
20 25

1.0 . 15 1‘0 15
Time index Time index

Figure 5.3: Time histories of the configuration x and velocity & respectively.

the third revolute joint is passive. The system is schematically represented in Figure

5.4.

q2
Yo q1
=

Figure 5.4: Planar Prismatic-Prismatic-Revolute manipulator with its third joint
unactuated.

The configuration of the system is given by (q1,¢2) € R? and g5 € S so for a given
configuration ¢ = (qi1, ¢, q3) in the configuration manifold @ = R? x S' ~ SE(2) of
the system (n = dim(Q) = 3), (q1, ¢2) represents the net displacement in the R? plane
with respect to a fixed basis while g3 € S corresponds to the orientation of the third
link.
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5.2.2. Dynamical model

We do not consider friction in the dynamical model and we assume the system
moves on a horizontal plane, so that it does not experiment the action of any gravita-
tional force. The mathematical model for the PPR manipulator is derived from the

Euler-Lagrange equations

L L
d(a) 0 o i=1,...,3

dt\og ) o
where L : T'() — R denotes the Lagrangian of the system, given by L = K — Pomg,
with K : TQ) — R and P : ) — R respectively being the kinetic and potential
energies of the system. 7; represents the force applied to the i-th link (i = 1,...,3).
In the sequel we shall write ¢ for cos and s for sin. Let [p;]o (i = 1,...,n) be the
position of the centre of mass of the i-th link with respect to the coordinate frame

Yo = (2o, yo) (see Figure 5.4). One easily checks that

iy = —ler +q pslo = G [pslo = lese(gs) + @
e 0 7 0 —lea g ) O less(qs) + a2 ‘

Differentiating we obtain the velocities of the links to be

o = @ vl = 0 vl = —less(q3) s + ¢
. <0>7 el (QQ>’ e (ZCBC(Q3)43+QQ )

Thus the kinetic energy associated with the 4-th link, K; = 3 m; [vilo?, is given by

. r .
Ki(q,q4) = 5 M
) 1 ) .
Ks(q,4) = §m2(<ﬁ +G3)
Ks(q,q) = 5 m3(d5 + 45 + 16565 — 21ess(gs) dids + 2 1esc(qs) 4ags).-

Since the potential energy is assumed to be zero, the Lagrangian of the system equals
the kinetic energy, i.c. L(q,q) = K(g,4) = 31y Ki(q,4) = 3G(d, ¢):
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) my + mo + ms 0 —mgless(qs)
L(q,q) = B g’ 0 mg +ms  malese(qs) q.

—mgalegs(qz)  malese(gs) msles?

Let M; = Zf’:j m; (j = 1,2) and J = mglcs®. Then

X M, 0 —mgless(gs)
L(q,q) = 3 q 0 M, mglesc(qs) q
—mgsless(qs) maslese(gs) J

From the Euler-Lagrange equations we obtain the dynamics of the PPR manipulator
to be

Mgy — mgaless(qs) Gs — malese(qz) G5 = 7
My + malese(gs) Gz — maless(qz) G5 = T (5.8)
Jgs — mgless(qs) G + malese(gs) G = 0

Rewriting the above set of equations into matrix notation we have

Ml 0 77713[638((]3) (.].1 —ms ngC((]g) qg T1
0 M2 m3l03c(q3) (j2 + —ms ngS(Qg) qg = T2
—mgaless(qs)  maslesce(gs) J g3 0 0

According to [6], if we consider the input transformation given by

) ms2les? ma2les?
7 = —mglesc(gs) CJ§ + (M1 - 3J E S2(Q3)> m+ SJ > s(gs)c(gs) m2
m32lC32 m32l032

T = —m3103S(Q3)(J§+(M2 CQ(q3)> = s(q3)c(q3) i,

J

the system (5.8) becomes
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Gi = m

@ = (5.9)
m3l03

gs = 7 (s(g3)m — c(g3)n2) -

If we now consider the following state and input transformations

= + ¢ .
zl Zl + mnglcasgz?); mo= o\ m?:]lcs g3 ) clas) + ﬁs(%ﬁ@
2 = @t osla . ;
les e = (v1+ 2@ ) s(as) — =2=clgs)v
Ys = (@3 maic3 maic3
we obtain the following system

o= clys)n
G2 = s(ys)u (5.10)
Us = U2

The latter system is locally defined on R? x S'. One may verify that its control vector
fields Yi(y) = c(ys3) 8%1 , + s(ys) 8%2 , and Ys(y) = 6%3 , satisfy the LARC at every
point, moreover, they are left-invariant with respect to the Lie group operation ¢ in
R? x S' defined by

c(as)by —s(az)be + a4
o(a,b) = | s(as)by + c(az)bs + ay for every a,b in R? x S,
as + bg

and therefore one is allowed to apply to (5.10) the methodology proposed in this
thesis. However, before we proceed, it is worth mentioning that (5.10) is equivalent

to
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ii'l = U

T3 = T2Uq,

by considering the following input and state transformations

rr = W
vr = sec(ys) u Ty = tan(ys)
. 2 = 3
ve = c(y3)’uz — 2tan(ys)y?
r3 = Y.

In this example we work with System (5.11), which also evolves on a Lie group.
The control vector fields which define (5.11) are, in addition, left-invariant under an

appropriately defined multiplication on R? as shown in the next section.

5.2.3. Application of the vertically transverse function approach

The system (5.11) can be recast as

¥ =u1 Xy (x) + ua Xo(z), (5.12)

where x = (z1, 29, x3) is a curve on R? and X4, Xy are vector fields defined by

0 0 0
N =g, T a0 =5,
The Lie bracket of X; and X5 is given by
0
X1, X5l = ——.
[ 1, 2] o3

Hence Lie({X1, X,}) spans T,R? at every z € R®.
Consider the differentiable manifold structure of R® together with the group struc-
ture defined by
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1+
(e, y) = Ty + Yo for every z,y in R,
T3+ Y3 + T2Y1

where the inverse of z in R® is 27! = (—zy, —2y, —13 + 571) and € = (0,0,0). From

the expression u(a,b) = Tng(a)ﬁwg(b)(a) + kag(b)ZﬂR;;(a)(b) (2.8) one finds that the
Lie group composition x in TR? associated with 7 is

a; + bl

as + by
as + bg + a261
p(a,b) = Va,be TR
ay + by

CL5—|—b5

ag + bﬁ + b1a5 + CLQb4

The inverse element of ¢ in TR? is then

-1
a = (—ay, —ag, —az + axay, —as, —as, 105 — Ag + a2a4),

and the identity e = 0. Given x in R?, the left translation by z, EI, is given by
/L\x(y) = fi(x,y) for all y in R®. Thus, the tangent map associated to L, at y € R,

ie. T,L, : T,R® — T;  R*is

1 00 V1 U1
T,L.(v)=1] 0 1 0 vy | = vy
i) 0 1 V3 ToU1 + Us
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Note that

1
Xi(L)=| 0o |,
To2 + Y2
1 00 1
TyLz(Xl(y)) = 0 1 0 0 = 0
o 0 1 Y2 Lo + Yo
and
0
Xo(Le(y) =1 1 |,

0

1 00 0 0

therefore, for every z,y in R?, XZ(Zx(y)) = TyIAJQC(Xi(y)) i =1,2, i.e. the vector fields
X, and X, are left-invariant and so are X1 and X1 with respect to p (Lemma 3 of
Chapter 4). X1 and X are vector fields on TR? defined by

i ) 9 i 9
X{'0) = —| +a2 == , Xyt (v) = 952

ot o3

v

where we consider (z, ) as coordinates for TR,

The system (5.12) can be rewritten as a system on TR? by

O =S) +u X1 () + us X3 (v) (5.13)

where S is the second-order vector field on TR? defined by S(v) = Y 1 | 4 -2

ozt lvy”

A transverse function f : T — R? associated with X; and X, near e can be

found by following the procedure recalled in Chapter 3, which yields
1
f(0) = (5 s(6),ec(8), 1 e%s(2 9)> Vo eT.
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The tangent map associated with f at § € T, Ty f is defined for cach 6 € T,T by

es(0)
ec(0)
Le%(20)
c6c(h)
—c0s(h)
1e20c(20)

Ty f(0) =

We proceed to define the auxiliary second-order system on 7T by

0 =w, (5.14)

and the error is given by z = u(v, Tf(w)™"), that is,

vy —es(6)

vg —ec(f)
. vy —es(0) vy + 1 £%(26)
2(0,0,v) = .
vy —e0c(h)

vs + £ 05(0)

ve — € 0c(0)va — es(0)vs + 220 ¢(20)

The error dynamics is found by differentiating the expression for the error z:

24
25
<6
i = _ , (5.15)
uy + 0% s(0) — aec(h)
uy + 0% c(0) + es(0)a

Zs (2,0, 9, w)

7



where

. 1
Zs(2,0,0,u) = —2wec(f)zs + 5 w?e?s(20) — es(0)usy
1

+Uu122 + u1€ C(@) + w?e 5(6)22 — 055(3((9)22 _ 5 o 2

From the latter expression, for Z, is easy to note that the vector field defining the error
dynamics is second-order, consequently we can write (5.15) taking the second-time

derivatives of (z1, 29, 23).

(31
5=DB(2,0,0)+ H(z,0) | u |, (5.16)

w

with

0% s(0)
B(z,0,0) = 0% c(6) ;
—20ec(f)zs + 1 02%(20) + 2,0%5(0)
and
1 0 —ec(0)
H(z,0) = 0 1 es(6)

zmtec(l) —es(d) —ec(f)z — 52

In order to construct a feedback function such that z converges to zero we take
a second-order vector field S € I'(TTR?) which has e € TR? as local exponentially

stable point, for instance

S, = (24, 25, 26, —k121 — kozg, —k120 — kozs, —k123 — kQZﬁ)

where the control gains ki, ko are strictly positive real numbers. One obtains such a

feedback function u(z,,0) by solving
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Uy

Sp(2) — B(2,0,0) = H(2,0) | u,

where

—ky12z — kozy
Su(z) = —k1zg — kozs |,

—ky2z3 — kozg

equation which is solvable due the nonsingularity of the matrix H.
The resulting feedback law is (u4(z, 0, 0), us(z, 0, 0), us(z, 0, 9)), with

uy(2,0,0) = L 4dc(0)zkiz +4c(0)zkyzg — 30%%5(0)
—602625(30) 4+ 22 ¢(20)k1 2, + 26 ¢(20) ko2
—2e5(20)k120 — 25(20) k25 + 40 z5¢(20)e
+40 25 — 4c(0)kyz5 — 4 c(0)kazg )

us (2,0, 9) = —45(0) 29k 121 — 45(0)20koz4 — 2e8(20)k12
—2£58(20)kyzs — 0%2¢(0) — 622¢(36)
—2¢(20)e kyzy — 2¢(20)e kozs — 460 255(20)e
+45(0)k123 + 45(0)kaz6 )

2 nglel + 2 22]{3224 — 92828(2 0) -+ 2€C(8)]€121
+2€C(9)]€224 — 268(0)]{5122 — 288(9)]€225
+49€C(9)Z5 -2 k’lzg -2 k)22’6 )

’LL3(Z, 07 9) =

™
wl’—‘
—~

The zero-dynamics of the auxiliary system is

f = —sin(26) 62, (5.17)

which can be described as evolving on TT. One may interpret this system as a
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mechanical system determined by a connection V which unique Christoffel symbol
is I'(#) = sin(f). Note that V is torsionless, so one may expect the connection be
compatible with a Riemannian metric G defined on T. To obtain this metric we solve

for G in (2.3), which in this case is equivalent to the ordinary differential equation

g

df
A family of solutions is given by G(0) = Ae 200 with A > 0. Let us define the
Lagrangian of the system L : TT — R by

() —2sin(260) G(0) = 0.

1 .
Lw) = 5G0(6.0) (5.18)
= %A62C052(9)92, (5.19)

with w = (#,6) € TT. One easily verifies that V0 = 0 (from (2.1)) is exactly (5.17),
therefore the zero-dynamics has the form of a simple mechanical system with zero
potential.

It is easy to show that < (L(w)) = 0 and so the energy of the system is a conserved
quantity. As G is a continuous function defined on a compact space T, G is bounded
from below. It follows that  remains bounded for all ¢ € [to, c0). As a consequence,
the state v of the target system (5.13) converges to a bounded neighborhood of zero
which depends on the initial conditions.

A numerical simulation of the complete system in closed-loop with u =
(u1(2,6,0),us(z,0,0),us(z,0,0)) was performed.

The initial condition is v = (x, %) = (2.0,0.5,—1.5,0.3,—1.0,0.1), the controller gains
are k; = ko = 1.0, and the value of ¢ is 0.6. Figure 5.5 depicts the evolution in
time of the error and the control input applied while Figure 5.6 shows plots of the
trajectories of the PPR manipulator. By observing the figures one may note that, as
in the previous example, the state of the system appears to be ultimately bounded.
The configuration variables converge to a neighborhood of zero, while the velocities

converge to a bounded set that depends on the initial conditions.
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Error signal z

25

05

Feedback function (uq,uq,w)

15 T T T

U2

1.0 . 15
Time index

~10 L L L L
0

1.0 . 15 20 25
Time index

Figure 5.5: Time histories of the error z and the control input u(z, 0, 9) respectively.

25

PPR configuration state (z1,z2,z3)

PPR velocities (&1, 22, 43)

x1

0.5 xs x2

” L L L L

15 L L L L

1.0 . 15 20
Time index

Figure 5.6: Time histories of the

25 0 5 10 . 15 20 25
Time index

configuration x and velocity & respectively.
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Chapter 6
Conclusions and future work

As shown in this thesis the tangent mappings associated with transverse functions,
as defined in the Morin and Samson sense [13|, satisfy also vertical transversality
(Section 4.2). This property comes as a natural generalization of the transverse
condition for functions.

This newly characterized property was used in this work in order to derive a control
technique to control second-order systems and, in particular, to tackle stabilization
of simple mechanical control systems defined on Lie groups. When this technique is
applied to second-order systems one achieves practical stabilization of the configu-
ration variables, namely one ensures that the projection of the state trajectory onto
the configuration converge to a previously specified, arbitrarily small neighborhood
of the desired equilibrium point.

A mechanical system, as remarked in Section 2.3, can be represented as evolving
on the tangent bundle of the configuration manifold. With the proposed approach
it is possible to impose any desired dynamics to the error, in particular one desires
the identity element to be an asymptotically stable point. Then one assures that
configuration trajectories of the system converge to a specified small neighborhood of
the bundle projection of desired equilibria. This means that the system configuration
will ultimately evolve sufficiently near the target equilibrium point. However, at
present, little can be asserted about the evolution of the fiber components of the
trajectories (corresponding to velocities of the system in a mechanical system). This

is mainly because, even though the error tends to zero as time increases, the closed-
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loop system evolves according to a nontrivial zero-dynamics entirely characterized by
the zero dynamics of the auxiliary system, as shown in Section 4.4.

When the drift term of the target and auxiliary systems are semisprays (which, in
the case of simple mechanical systems, it turns out to be the case), we show that the
zero-dynamics is also defined by a semispray. One possible way to proceed in order to
achieve convergence of the fiber trajectories to a specified neighborhood of the zero
section is to examine the drift vector field of the auxiliary system to determine if the
imposition of a particular structure ensures that the velocities remain bounded, i.e. it
could be possible that, by selecting an appropriate second-order field A in Equation
(4.8), the target system achieves the desired behavior.

While applying the approach to a particular system, specifically to the one in
section 5.2 (PPR manipulator), we discovered that the zero-dynamics of the auxiliary
system has an interpretation as a simple mechanical system by finding a Riemannian
metric. With this metric we were able to define a smooth energy function for the
system and thus to show that the fiber trajectories were bounded, with a bound de-
pending on the initial conditions. This example seems to suggest that, for mechanical
systems, the fiber trajectories are bounded, given that in this particular example the
spray associated to the zero-dynamics of the auxiliary system defines a torsionless
connection which is also compatible with a Riemannian metric. If one can show that
the semispray that rules the evolution of the zero-dynamics is the Levi-Civita connec-
tion for a Riemannian metric, then the next natural step would be to use the latter
to define an energy function for the auxiliary system, which could in turn be useful to
guarantee that the velocities do not grow unbounded. However, finding a Riemannian
metric associated with the Cristoffel symbols of a connection is, in general, a rather
involved task, and hence work remains to be done in this direction.

Another way to achieve stabilization of mechanical systems could be to analyze the
possibility of using the so-called generalized transverse functions, a more recent result
published by Morin and Samson [15]. With these functions, which are also transverse
in the original sense, one is able to obtain asymptotic stabilization of trajectories
for certain systems in which the drift is not needed to generate the accessibility
distribution. Trying to generalize these functions might be instrumental to achieve

practical stabilization of mechanical systems.
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The implementation of trajectory tracking controllers by using the proposed ap-
proach is formally straightforward and is another road to explore in immediate future
work. More future work is to study mechanical systems with symmetries, given that
symmetries play an important role in the analysis and design of motion control algo-
rithms.

Finally, it is worth mentioning that, although the approach outlined in this thesis
does not constitute a complete extension of Morin and Samson’s approach based on
transverse functions, it takes steps toward what might constitute an interesting theory
for the stabilization of admissible trajectories for second-order systems, including fixed

points.
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