
This is the Author's Post-print version of the following article: I. Campos-
Cantón, E. Campos-Cantón, J.S. M urguía, H.C. Rosu, A simple electronic 
circuit realization of the tent map, Chaos, Solitons & Fractals, Volum e 42, 
Issue 1, 2009, Pages 12-16, which has been published in final form at 
https://doi.org/10.1016/j.chaos.2008.10.037 This article may be used for 
non-commercial purposes in accordance with Terms and Conditions for 
Self-Archiving 

https://doi.org/10.1016/j.chaos.2008.10.037


A Simple Electronic Circuit Realization of the Tent Map

I. Campos-Cantón1, E. Campos-Cantón2, J. S. Murgúıa2 and H. C. Rosu3
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Abstract

We present a very simple electronic implementation of the tent map, one of the best-known discrete dynamical

systems. This is achieved by using integrated circuits and passive elements only. The experimental behavior of

the tent map electronic circuit is compared with its numerical simulation counterpart. We find that the electronic

circuit presents fixed points, periodicity, period doubling, chaos and intermittency that match with high accuracy

the corresponding theoretical values.
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1 Introduction

Discrete-time nonlinear dynamical systems are generally described as iterative maps f : ℜk → ℜk given by
their state equation

xn+1 = f(xn), n = 0, 1, 2, ... , (1)

where x0 is the initial state, k is the dimensionality of the state space, xn ∈ ℜk is the state of the system at
time n, and xn+1 denotes the next state. The interpretation of the state vector depends on the context. For
example, in population biology xn is usually the population size in generation n, in epidemiology it is the
fraction of the population infected at time n, whereas in economics it can be the price per unit at time n for
a certain commercial product. Repeated iteration of f gives a sequence of points {xn}

∞

n=0
that is known as

an orbit. Clearly, equation (1) is a difference equation. In the words of R.M. May [1], such equations, even

though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points,

to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. The tent map is one of the
simplest iterated functions and, either alone or in more general forms, has been the subject of interesting
papers published in this journal, see e.g., [2, 3, 4]. It has the shape of a tent as is shown in Fig. 1. It takes
a point xn on the real line and maps it to another point given by the following equation

xn+1 =







µxn for xn < 1

2

µ(1 − xn) for 1

2
≤ xn,

(2)

where xn ∈ [0, 1], and µ ∈ [1, 2] is a bifurcation parameter that controls the properties of the tent map.
Many of the basic properties of the tent map can be found in the book of Elaydi [5] on discrete chaos.
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Fig. 1: Plot of the tent map function.

The tent map is a very simple model for studying a variety of nonlinear phenomena. The nonlinear
dynamics of the tent map has found applications in as different areas as biophysics, meteorology, hydrody-
namics, chemical engineering, optics, cryptology, and communications. For example, in [6] the tent map is
used to illustrate the synchronization and/or non-synchronization of chaos, which raised considerable interest
in finding simple circuits that exhibit nonlinear phenomena. Murali et al [7] provided a proof of principle
experiment of the capability of chaotic systems for universal computing.

In general, any map can be electronically designed. Following Tanaka et al. [8], a typical circuit diagram
of a chaotic one-dimensional map with its iterative operation is shown in Fig. 2. In this paper, we present
one of the simplest electronic implementation of the tent map, which at the same time is a good engineering
model of the corresponding mathematical system. Through the variation of the tent map control parameter
µ, one can examine the bifurcation diagram of the realized system and we were able to reproduce the
theoretical diagram with high accuracy.

Fig. 2: A typical block diagram of a map.

2 Electronic implementation of the tent map

In several implementations of this kind of circuits [9, 10] analog multipliers have been employed with a
normalization of the signal by a factor of about ten. This normalization was necessary because of the
physical restrictions in the analog multiplier. The starting point is a block diagram of the tent map that
is shown in Fig. 3. Typically, these circuits contain several operational amplifiers, which perform linear
operations (e.g., integration and summation), as well as a couple of integrated circuits that perform the
nonlinear operations (i.e., multiplication). In general, a large number of active components make it difficult
to directly extrapolate these designs to high frequencies. Another approach is to use a digital signal processor
and digital-to-analog converters. Here, we describe a new circuit that contains active components, speeds of

2



Vin-0.5  0        if  a < 0
-2µa   otherwise

+

Vin

Vout

a b

c

1

2

0

1

-2

0

0.5

(a) (b) (c)

 0        if Vin < 0
µVin   otherwise

Switching block

Fig. 3: (a) Block diagram of the tent map used to construct the electronic circuit. (b) Response of the lower branch
of the block diagram. (c) Response of the upper branch of the block diagram.

Fig. 4: Schematic diagram of the tent map electronic circuit.

radio frequencies, and capable of reproducing the transition from steady state to chaos as observed in the
tent map equation when the bifurcation parameter is varied.

We now introduce a designed circuit of the tent map based on Fig. 3. The flow diagram of the tent map
used to construct the electronic circuit is shown in Fig. 3 (a). The behavior of the tent map is based on
two straight lines given by l1 : µVin and l2 : −2µVin + 1 with domains [0,∞) and [0.5,∞), respectively. The
output Vout is given by l1 when Vin belongs to the interval [0V, 0.5V) and by l1+l2 when Vin is in the interval
[0.5V, 1V). The responses of the lower and upper branches are shown in Figs. 3 (b) and (c), respectively.
This simple approach allows for the changing of the slope from µ to −µ. One can think of the system as
having two weak points, Vin < 0 and Vin > 1. However, the response of the circuit is zero for these inputs.
In the absence of noise the tent map circuit can remain in one of the fixed points, but in the real world of
analog electronic components there always exists some noise that generates the dynamics in the circuit. The
schematic diagram of the tent map circuit is shown in Fig. 4, which consists of five operational amplifiers
(from U1 to U5), four diodes (D1 - D4), thirteen resistors (from R1 to R13), and a dc voltage source (Vdc).
The simplicity of this circuit is due to the fact that the linear mathematical operation of commutation is
performed by the operational amplifiers in the switching block, as is shown in Fig. 3.

Assuming ideal performance from all components, the circuit in Fig. 4 is modeled by the following
equation
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Device Value
R1,2,3,4,7,8,9,10,12,13 1 kΩ resistor
R5,6 5 kΩ potentiometer
R11 100 kΩ potentiometer
D1,...,4 1n1419 diode
U1,...,5 LM324 op. amp.

Table 1: The values of the electronic components employed in the construction of the tent map electronic circuit.

Vout =
R9R6

R8R7

Vin −



















0, for Vin <
R1

2R2

,

R9R5

R10R4

(

R3Vin

R1

−
R3

2R2

)

, for Vin ≥
R1

2R2

,

(3)

where Vin and Vout are the input and output voltages of the tent map electronic circuit, respectively. It is
worth noting that the switching block shown in Fig. 3 is realized through the b node,

Vb =



















0, for Vin <
R1

2R2

,

R5

R4

(

R3Vin

R1

−
R3

2R2

)

, for Vin ≥
R1

2R2

.

(4)

Thus, Eq. (3) is equivalent to Eq. (2) for the values of the components given in Table 1, and replacing
Vin and Vout for xn and xn+1, respectively. In fact, this set of values is not unique because Eq. (3) contains
several parameters. Thus, a circuit designer has the freedom to choose the particular components that
satisfy other design constraints in a particular application. Despite of parasitic reactance, finite bandwidth
of active components, and other experimental perturbations, the presented electronic circuit displays closely
the behavior of the mathematical model given by Eq. (2). We implemented this design on a printed circuit
board (PCB) manufactured in our laboratory. In the experimental circuit we used the LM324 operational
amplifiers supplied with a power source at ±15V and soldered directly to the PCB without a socket. The
voltage Vdc was supplied by a variable dc supply with an output range of 0 − 15V. In order to have an
iterative operation, see Fig. 2, this circuit considered a microcontroller PIC16F877A of Microchip, and
a D/A converter DAC0800 of National Semiconductors with a processing time of 100 µs between voltage
samples. Obviously, there are different ways to perform this iterative operation, but this is a matter that
depends of the designer and the application.

The value of the bifurcation parameter µ can be fixed at certain values by simply adjusting the poten-
tiometers R5 and R6 located in the operational amplifiers U2 and U3. The relationship between the resistors
R5 and R6 with the value of µ is given by equation (5), i.e., µ = R5/2kΩ = R6/1kΩ.

Vout =



















R6

1kΩ
Vin, for Vin <

1

2
,

R5

2kΩ

(

1 −

(

2 −
2R6

R5

))

, for Vin ≥
1

2
.

(5)

In order to explore the full range of the dynamics accessible to this circuit, we experimented with different
values of R5 and R6. These resistors were adjusted in the closed interval [1 kΩ, 4 kΩ]. Then µ was varied
to obtain the bifurcation diagram shown in Fig. 5. In this figure, fixed points, periodic oscillations, period-
doubling cascade and chaos can be clearly seen. From Fig. 5, it can be seen that the circuit exhibits the
entire range of behaviors of the tent map. In fact, our experimental results of the dynamics of this circuit
are found to be in good agreement with the theoretical values. Figure 6 (a) shows a time series of the output
voltage for µ = 2. In our measurements, each experimental time series contained 650 points collected for
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Fig. 5: Experimental bifurcation diagram for the tent map.

different values of the bifurcation parameter µ. Figure 6 (b) shows the histogram of the noise calculated
over the 650 points. The noise time series rn was estimated by the following equation

rn = xn+1 − f(xn) , (6)

where xn and xn+1 are the experimental data of the tent map circuit, and f(·) is given by equation (2).
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Fig. 6: (a) The time series with chaotic dynamics generated by the tent map for µ = 2. (b) The histogram of the
noise estimated by means of equation (6).
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3 Conclusion

A very simple tent map electronic circuit has been presented here and its implementation using only analog
components as operational amplifiers, diodes, and resistors was also provided. Therefore, it can be assembled
even by students at the level of an undergraduate laboratory. Its experimental behavior was tested and
compared with the numerical behavior given by the tent map difference equation. The circuit that replicates
the whole known range of behaviors of the tent map has been determined. The employed techniques are
simple and the approach can be extended to other types of maps such as the piecewise linear or piecewise
smooth maps. Such circuit realizations have many potential applications, for example: random number
generation, frequency hopping, ranging, and spread-spectrum communications. Finally, we notice that this
design can be manufactured in just one chip because the final electronic circuit contains only semiconductors
and passive components.
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