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Abstract. Recent results on the one-parameter supersymmetric deformation in

momentum space by Curtright and Zachos (2014 J. Phys. A: Math. and Theor.

47 145201) are presented in a more general framework following our own papers. We

extend the analysis of Curtright and Zachos by including the supersymmetric partner

one-parameter deformation.
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Supersymmetric quantum mechanics [1, 2] is an algebraic operator method which

has been used to generate new exactly-solvable Schrödinger spectral problems. It is

predominantly performed in configuration space because algebraically one does not

expect differences when one changes the representation. The basic commutators,

such as [x, p] which turns a wavefunction in momentum space φ(p) into iφ(p), act

exactly as in the configuration space, and therefore any more complicated algebraic

structure is preserved in form. As Weigold [3] expressed many years ago the coordinate

representation of quantum mechanics prevails over the momentum representation

http://arxiv.org/abs/1409.5365v2


One-parameter supersymmetric Hamiltonians in momentum space 2

because “we are used to think in position space but not in the momentum space”,

although in all the important experimental methods, such as electron-momentum

spectroscopy [4] and Compton scattering [5], the momentum distribution of the electrons

is the primarily measured quantity.

In a recent paper by Curtright and Zachos (CZ) [6], the deformed one-parameter

supersymmetry based on the general Riccati solution is performed in the momentum

space of quantum mechanics and not in the usual coordinate representation. The

motivation can be found in their focus on the interesting topic of branched (multi-valued)

Hamiltonians which has been revived by Shapere and Wilczek [7, 8, 9] and requires to

go to the momentum space. The reason behind this is that in this way the strange

problem of studying multiple-valued Hamiltonians is turned into standard quantum-

mechanical problems with special attention to the probability flow at the boundaries.

Essentially, CZ discuss the quantization in momentum space for a classical Hamiltonian

with two kinetic energy branches and a square power potential, where one is led to a

supersymmetric pair of quantum Hamiltonians in momentum space. However, they also

employ the one-parameter supersymmetric method in which the pair of supersymmetric

partner potentials is turned into a one-parameter family of potentials, which is equivalent

to a family of infinite number of branches labeled by the values of the parameter.

The purpose of this paper is to present the CZ case from the point of view of our

recent papers [10, 11] providing in this way a more detailed analysis of this interesting

case. Moreover, our analysis yield up features of the method which go beyond those

in [6]. In particular, we will show that a family of deformed supersymmetric branches

different from the CZ one is possible.

Curtright and Zachos discuss the following supersymmetric pair

H∓(p) = − d2

dp2
+ p∓ 1

2
√
p

(1)

forming the two branches of the corresponding supersymmetric Hamiltonian that can

be represented as a 2× 2 diagonal matrix with the two partner Hamiltonians set on the

diagonal positions. The usual factorization of these Hamiltonians is given by

H∓(p) =

(

d

dp
∓W0(p)

)(

− d

dp
∓W0(p)

)

(2)

where the particular Riccati solution W0(p) =
√
p gets involved. Alternatively, one can

say that the pair of supersymmetric partner potentials are given by the following pair

of Riccati equations

−W ′ +W 2 = V1 (3)

W ′ +W 2 = V2 , (4)

where the prime stands for the derivative with respect to p. These equations correspond

to H− and H+, respectively. If one uses the particular solution W0(p), one gets the

potentials

V1(p) = p− 1

2
√
p

(5)
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V2(p) = p+
1

2
√
p
. (6)

These partner potentials are displayed in figure 1. However, since the works of Mielnik

[12], Fernández [13], and Nieto [14], it is known that one can construct one-parameter

families of potentials if one employs the general Riccati solution of either Eq. (3) or

Eq. (4). In our recent papers on the deformed one-parameter supersymmetric potentials

[10, 11], we used the Riccati equation (4) as the starting point for this construction, while

in section 5 of their paper, Curtright and Zachos use the first Riccati equation (3). For

the sake of completeness, we discuss here both deformations on an equal footing using

some general results presented in [10, 11].

Substituting the Bernoulli ansatz for the general Riccati solution W = W0 + 1/u

in the two Riccati equations, one gets the following linear equations

u′ + 2W0u+ 1 = 0 (7)

−u′ + 2W0u+ 1 = 0 . (8)

The integrating factors of these equations are µ1(p) = e2
∫

p
W0dp and µ2(p) = e−2

∫

p
W0dp,

respectively, which for the CZ case are explicitly

µ1(p) = exp

(

4

3
p

3

2

)

, µ2(p) = exp

(

−4

3
p

3

2

)

. (9)

The square roots of these integrating factors are the zero modes (ground states) of H+

and H−, i.e.,

Ψ̃0 ≡
√
µ1 = exp

(

2

3
p

3

2

)

and Ψ0 ≡
√
µ2 = exp

(

−2

3
p

3

2

)

, (10)

respectively [10]. Then, one can obtain the general Riccati solutions in the form

W1γ = W0 +
µ1

γ −
∫ p

µ1dp
, W2γ = W0 +

µ2

γ +
∫ p

µ2dp
, (11)

which can be also written as

W1γ = W0−
d

dp
ln

∣

∣

∣

∣

γ −
∫ p

µ1dp

∣

∣

∣

∣

, W2γ = W0+
d

dp
ln

∣

∣

∣

∣

γ +

∫ p

µ2dp

∣

∣

∣

∣

, (12)

where γ is the integration constant parameter, which is the inverse of the parameter

used by Curtright and Zachos and can be used as a deformation parameter in the

supersymmetric construction. It is easy to show then using V1γ = V2 − 2
dW2γ

dp
and

V1 = V2 − 2dW0

dp
that the first parametric family of supersymmetric potentials has the

general expression

V1γ(p) = V1(p)− 2
d2

dp2
ln |γ + γ2(p)| , (13)

γ2(p) =

∫ p

0

µ2(p)dp = −2

3
pE 1

3

(

4p
3

2

3

)

+
Γ
(

2

3

)

6
1

3

, (14)



One-parameter supersymmetric Hamiltonians in momentum space 4

whereas for the second family one should use V2γ = V1 + 2dW1γ

dp
and V1 = V2 − 2dW0

dp
,

which leads to

V2γ(p) = V2(p)− 2
d2

dp2
ln |γ − γ1(p)| , (15)

γ1(p) =

∫ p

0

µ1(p)dp = −2

3
pE 1

3

(

−4p
3

2

3

)

+
Γ
(

2

3

)

6
1

3

. (16)

In (14) and (16), Eq(z) is the exponential integral function defined as

Eq(z) =

∫

∞

1

exp (−zt)

tq
dt (17)

which is the upper incomplete Gamma function using the rescaling zt → t

Eq(z) = zq−1

∫

∞

z

exp (−t)

tq
dt = zq−1Γ(1− q, z) . (18)

In our case, since q = 1/3 we obtain the simple relationship

E 1

3

(z) =
Γ
(

2

3
, z
)

3
√
z2

(19)

which can be also used in (14) and (16) if one wants to express the results only in terms

of Gamma functions. One can also define

∆V1 ≡ V1γ − V1 = −2
d2

dp2
ln |γ + γ2(p)| (20)

and

∆V2 ≡ V2γ − V2 = −2
d2

dp2
ln |γ − γ1(p)| (21)

as the one-parameter deformations of the supersymmetric partner potentials. Moreover,

the non-normalized deformed zero-modes can be written as follows

Ψ0γ(p) =

√

µ2(p)

γ + γ2(p)
, Ψ̃0γ(p) =

√

µ1(p)

γ − γ1(p)
, (22)

upon noting that the undeformed zero modes are connected to the particular Riccati

solution as lnΨ0 = −W0 and ln Ψ̃0 = W0, and then in the deformed case the relationships

are lnΨ0γ = −W2γ and ln Ψ̃0γ = W1γ, according to the corresponding second logarithmic

derivatives that provide the deformation of the potentials. Furthermore, an iteration

process of these supersymmetric deformations is possible leading to multiple-parameter

deformed potentials and zero modes [15].

We end up with the normalization issue of the deformed zero modes. In the case of

Ψ0γ , this issue is well settled, see [11]. One should consider first a normalized undeformed

zero mode, i.e.,

Ψ0n =

√

µ2

γ2(∞)
(23)

and then one can show that the normalized deformed zero modes are given by

Ψ0γn =

√

γ(γ + 1)

γ2(∞)

√
µ2

γ + γ2
. (24)
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From the latter expression, one can see that γ should not be in the interval [-1,0] in

standard quantum mechanical applications. On the other hand, for Ψ̃0γ, although the

undeformed zero mode cannot be normalized the deformed zero modes are bounded

functions at infinity. The normalization can be performed by the standard formula

Ψ̃0γn =
1

√

∫

∞

0

µ1

(γ − γ1)2

√
µ1

γ − γ1
. (25)

In particular, for the case studied by Curtright and Zachos, the normalized deformed

zero modes are

Ψ0γn(p) =
√

γ(γ + 1)

√

6
1

3

Γ
(

2

3

)

e−
2

3
p
3
2

γ − 2

3
pE 1

3

(

4p
3
2

3

)

+
Γ( 2

3
)

6
1
3

, (26)

Ψ̃0γn(p) =
1

√

√

√

√

√

∫

∞

0

e
4p

3
2

3 dp
(

γ+
2p

3
E 1

3

(

−
4p

3
2

3

)

−
Γ( 2

3)
6

1
3

)2

e
2p

3
2

3

γ + 2p

3
E 1

3

(

−4p
3
2

3

)

− Γ( 2

3
)

6
1
3

. (27)

Plots of the general Riccati solutions and the resulting deformed potentials and zero

modes for some values of the deformation parameter are presented in figure 2. The

parameters are chosen such as to avoid the generation of singularities [10, 11]. Since γ2
belongs to [0, γ2(∞)]=[0,0.7452], then γ should not be in the interval [-0.7452,0] in the

case of the parametric deformation of V1. This interval is however enclosed in the one

already prohibited through the normalization condition. On the other hand, because

γ1 > 0 for any p, then γ should be strictly negative to generate continuous deformations

of V2.

Regarding the large p asymptotics of the two classes of deformed potentials in the

CZ case, both go to the linear potential ∼ p. On the other hand, the general Riccati

solutions have the behaviour W1γ → −√
p and W2γ → √

p, respectively. Moreover,

both parametric Riccati solutions have initial values 1/γ but they rapidly tend for any

allowed γ to the parabolic branches ±√
p. In addition, we notice that for large γ the

functions W1γ follow at low momenta the
√
p branch but at some critical p they bend

towards the −√
p branch. A typical example is shown in figure 3. The reason is that

at high p the parametric part of W1γ tends to −2
√
p forcing the bending towards the

−√
p branch while in the case of W2γ the parametric part tends to zero. Concerning the

deformed zero modes, in the large deformation parameter asymptotics they turn into

the corresponding undeformed zero modes.

In conclusion, we have discussed here in a more general setting the recent example of

Curtright and Zachos of one-parameter deformed supersymmetry in momentum space

presenting a second deformation that can be performed, the one in the left panels

of figure 2, and pointing out the bending asymptotic feature of the general Riccati
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solutions W1γ . Regarding the relevance of these deformations, one should notice that

the deformed wavefunctions are subject to Robin boundary conditions at the origin, as

it is easily established for the deformed zero modes [6]. As such, the deformed systems

might be a class of more flexible branches as to the undeformed partner systems. The

latter, despite being linked through the supercharge operators, are completely separated

by the boundary conditions at the origin, Dirichlet for one and Neumann for the other.
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Figure 1. The supersymmetric partner potentials V1(p) (blue) and V2(p) (orange).

Figure 2. Left panels: General Riccati solutions W2γ(p), the related deformed

potentials V1γ(p), and the deformed normalized zero modes Ψ0γn(p) for a set of four

values of the deformation parameter. Right panels: General Riccati solution W1γ(p),

the related deformed potentials V2γ(p), and the deformed normalized zero modes

Ψ̃0γn(p) for the same set of values of the deformation parameter.
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Figure 3. The general Riccati solution W1γ(p) (blue) for γ = −1000 displaying the

bending feature.




