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Abstract

We use nonrelativistic supersymmetry, mainly Darboux transformations of the general (one-

parameter) type, for the quantum oscillator thermodynamic actions. Interesting Darboux gen-

eralizations of the fundamental Planck and pure vacuum cases are discussed in some detail with

relevant plots. It is shown that the one-parameter Darboux-transformed Thermodynamics refers

to superpositions of boson and fermion excitations of positive and negative absolute temperature,

respectively. Recent results of Arnaud, Chusseau, and Philippe regarding a single mode oscilla-

tor Carnot cycle are extended in the same Darboux perspective. We also conjecture a Darboux

generalization of the fluctuation-dissipation theorem.

I. INTRODUCTION

Recently, Arnaud, Chusseau, and Philippe (hereafter ACP) [1] studied the work done per
Carnot cycle by a single mode oscillator of the ideal LC type operating between two baths
of different temperatures. They used the old (1906) prescription of Einstein of discrete h̄ω
exchanges with the baths. Within this approach, they confirmed the Carnot theory of the
efficiency of cyclic engines for this case. As known, the energy of the oscillator is given by
Planck’s distribution

UP (ω, β) =
h̄ω

2
+

h̄ω

exp(βh̄ω)− 1
. (1)

One can define an action function

fP (x) =
UP

ω
=

h̄

2
+

h̄

exp(h̄x)− 1
=

h̄

2
coth(

h̄x

2
) , (2)

where x = βω. This action plays the role of a generalized force in the process of frequency
change. In order to evaluate the efficiency, ACP introduced a ‘two-variable entropy’

s(x, y) ≡ xfP (y)−
∫ x

fP (z)dz =
h̄x

2
coth(

h̄y

2
)− ln sinh(

h̄x

2
) + C , (3)
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with the property s(x, x) = s(x), the latter being the usual entropy. Employing standard
thermodynamic formalism, ACP calculated the efficiency of both reversible and nonreversible
Carnot cycles.

ACP made the interesting remark that the oscillator action fP (x) fulfills as particular
solution the following Riccati equation

df

dx
+ f 2 =

(

h̄

2

)2

. (4)

As a matter of fact, the constant vacuum action fV = h̄
2
is also a solution of the same

Riccati equation, whereas the pure thermal action fT = h̄
exp(h̄x)−1

is a particular solution of
the following equation

df

dx
+ h̄f + f 2 = 0 , (5)

which is a Bernoulli equation (or a particular type of Riccati equation). Here we would like
to study the thermodynamic consequences of using methods belonging to supersymmetric
quantum mechanics [2] focusing on one-parameter Darboux transformations of thermody-
namic actions.

II. GENERAL SOLUTION OF THE SUPERSYMMETRIC PARTNER RICCATI

EQUATION

In Witten’s supersymmetric quantum mechanics [3], which is a simple application of
Darboux transformations [2], one usually starts with a known particular solution of a Riccati
equation without linear term

dfp
dx

+ f 2
p = V1(x), (6)

that we call the bosonic Riccati equation. We are not interested here in a so-called factor-
ization constant that can be placed at the right hand side. The function V1 is an exactly
solvable potential for the Schrödinger equation at zero energy

(

d

dx
+ fp

)(

d

dx
− fp

)

wb =
d2wb

dx2
− V1(x)wb = 0 . (7)

The particular solution wb is usually called a bosonic zero mode. It is connected to the
Riccati solution through fp = 1

wb

dwb/dx. Next, changing the sign of the first derivative in

Eq. (6) one calculates the outcome V2(x) using the same Riccati solution

−
dfp
dx

+ f 2
p = V2(x) . (8)

We call the latter equation the fermionic Riccati equation. The function V2(x) is known
as the supersymmetric partner of the initial potential V1(x). The corresponding zero mode
fulfills



(

d

dx
− fp

)(

d

dx
+ fp

)

wf =
d2wf

dx2
− V2(x)wf = 0 . (9)

On the other hand, already in 1984, Mielnik [4] studied the ambiguity of the factorization
of the Schrödinger equation for the oscillator that led him to the general (one-parameter-
dependent) solution of the companion Riccati equation for that case. In other words, one
looks for the general solution [2]

−
dfg
dx

+ f 2
g = −

dfp
dx

+ f 2
p = V2(x) . (10)

The latter equation can be solved for fg by employing the Bernoulli ansatz fg(x) = fp(x)−
1

v(x)
, where v(x) is an unknown function [5]. One obtains for the function v(x) the following

Bernoulli equation

dv(x)

dx
+ 2v(x) fp(x) = 1 , (11)

that has the solution

v(x) =
I0b(x) + λ

w2
b (x)

, (12)

where I0b(x) =
∫ x
0 w2

b (y) dy, and we consider λ as a positive integration constant that is
employed as a free parameter.

Thus, the general fermionic Riccati solution is a one-parameter function fg(x;λ) of the
following form

fg(x;λ) = fp(x)−
d

dx

[

ln(I0b(x) + λ)
]

=
d

dx

[

ln

(

wb(x)

[I0b(x) + λ]

)

]

=
d

dx
lnwb(x;λ) (13)

where wb(x;λ) = wb(x)
I0b(x)+λ

. The range of the λ parameter is conditioned by I0(x) + λ 6=

0 in order to avoid singularities. This is a well-known restriction [4]. According to the
supersymmetric construction, one can use this general fermionic Riccati solution to calculate
a one-parameter family of bosonic potentials as follows

dfg
dx

+ f 2
g = V1,g , (14)

where

V1,g = V1 − 2
d2

dx2
ln (I0b(x) + λ) (15)

enters the linear equation
(

d

dx
+ fg

)(

d

dx
− fg

)

wb(x;λ) =
d2wb(x;λ)

dx2
− V1,gwb(x;λ) = 0 . (16)

In the limit λ → ∞, Eq. (14) goes into Eq. (6) because fg → fp and V1,g → V1.
One can think of Eq. (14) as a generalization of the thermodynamic Riccati equation (4).

Of interest are the one-parameter oscillator actions fg rather than the ‘potentials’ V1,g. Since
in supersymmetric quantum mechanics V1,g are the general Darboux-transformed potentials,
we shall call the fg as Darboux-transformed actions.



A. The Planck case

Using f = w′/w in Eq. (4), where the prime denotes the derivative with respect to x,
leads to the linear equation

w
′′

−

(

h̄

2

)2

w = 0 , (17)

having the particular zero-mode solution wa = Wa sinh(
h̄
2
x). Thus, the general Riccati

solution is a one-parameter function fgP (x;λ) of the following form

fgP (x;λ) = fP (x)−
d

dx

[

ln(I0a(x) + λ)
]

=
d

dx

[

ln

(

wa(x)

[I0a(x) + λ]

)

]

. (18)

Accordingly, the two-variable entropy will also become a parameter-dependent function

sg(x, y;λ) ≡ xfgP (y;λ)−
∫ x

fgP (z;λ)dz , (19)

where from all the basic calculations as performed by ACP can be easily repeated. For
example, to calculate Carnot efficiencies one can use the generalized ACP formula

ηC,g = 1−
Tcold

Thot

sg(b, a;λ)− sg(u;λ)

sg(a;λ)− sg(v, u;λ)
, (20)

and the same values of the parameters as in ACP, i.e., Tcold = 1/4, Thot = 1, a ≡ βhotω1 = 1,
b ≡ βcoldω2 = 4, u ≡ βcoldω3 = 2c, and v ≡ βhotω4 = 2, keeping c as a free parameter. The
results of this subsection are illustrated in the plots of Figs. (1) - (4).

B. The vacuum case

For this case, the particular Riccati solution is the vacuum action fp = fV = h̄
2
. The

corresponding zero mode is wV ∝ eh̄x/2. The usual entropy sV (x, x) of the vacuum fluctua-
tions is zero as a result of a simple calculation, whereas the modified entropy has a kink-like
behavior between the h̄

2
(bosonic) solution and the − h̄

2
(fermionic) solution. Plots of this

case are displayed in Figs. (5) - (8).

C. The symmetric zero mode: Fermi-Dirac action at negative T

The cases in A and B could be considered particular cases of the general zero-mode
wg = Aeh̄x/2 + Be−h̄x/2 that can be also used as solution in Eq. (7). The Planck action
corresponds to A = −B = 1

2
(antisymmetric zero-mode), while the vacuum case to A =

arbitrary and B = 0. One can use any other type of zero-modes. For example, the symmetric



zero-mode ws = Ws cosh(
h̄
2
x) (see Figs. (9) - (10)) is an interesting case since if we trace

back to the action we get

fs = −
h̄

2
+

h̄

exp(−h̄x) + 1
, (21)

i.e., a Fermi-Dirac action for negative x. We have shown in a previous paper that the
λ parameter is equivalent to the quotient A/B [6]. Thus, the general Riccati solution
introduces effects of the second linear independent solution. The problem then turns into
a subtle interpretation of the mathematical results. We have found at least one possible
physical significance. For the Planck case, the second linear independent zero-mode is exactly
the cosh function and the corresponding action is the aforementioned Fermi-Dirac action of
negative x. We attach now the minus sign to the temperature parameter in x = ω/T and
recall that the issue of negative absolute (spin) temperatures first appeared in Physics in
1951 when Purcell and Pound were able to produce sudden reversals of the direction of an
external magnetic field applied to a crystal of LiF [7]. Since then many other experiments
with negative temperatures have been devised in nuclear spin systems and the corresponding
‘violations’ of the second law of thermodynamics were a subject of discussion [8]. Thus, the
one-parameter Darboux transformations of the Planck action are a way of introducing upon
it the effect of a Fermi-Dirac action of negative absolute temperature. On the other hand,
in the figures (9) - (10) we introduce effects of the Planck action of positive temperature on
the Fermi-Dirac action of negative temperature.

III. THE DARBOUX GENERALIZATION OF THE

FLUCTUATION-DISSIPATION THEOREM

Another interesting application refers to dissipative RLC systems where the oscillator
action enters Nyquist-Johnson spectral power noise distributions of the type (fluctuation-
dissipation theorem [9])

P (ω, β) =
ω

π
R(ω, β)fP . (22)

One can think of the corresponding generalization

P (ω, β;λ) =
ω

π
R(ω, β)fg(βω;λ) (23)

and hope to study even in simple experiments the significance of the present approach
predicting a Darboux generalization of the fluctuation-dissipation theorem.

IV. CONCLUSION

In this work, Planck’s thermodynamic oscillator action is generalized to a one parameter
Darboux family of actions. We also consider the bosonic vacuum case separately in the same
way. The Planck action and the pure vacuum case correspond to the asymptotic limit of



the Darboux parameter λ → ∞. In the Planck case, all the other λ cases correspond to
a system made of bosons at temperature T interacting with an equal system of fermions
at temperature −T . In the vacuum case, the λ 6= ∞ cases describe the interaction of the
bosonic and fermionic vacua. The efficiencies of the ideal oscillator Carnot cycles based on
the Darboux-modified Planck and vacuum entropies are calculated along the lines described
by Arnaud, Chusseau and Philippe. Systems of negative Kelvin temperatures are hotter than
those of positive T [8] and therefore they always represent the hot bath. In real, dissipative
cases, the same type of generalization is suggested for the fluctuation-dissipation theorem.
Finally, we mention that a multiple-parameter Darboux generalization is also possible [10].
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Fig. 1. The one-parameter Darboux-modified Planck action fg(x;λ) as a function of x and λ.
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Fig. 2. The standard and the one-parameter entropy functions. There are only small differences

between them. For more details see Fig. 3.
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Fig. 3. The difference between entropies ∆s = sg − sP .
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Fig. 4. Darboux-modified Carnot efficiencies for the Planck case. The plane at the height 0.75

corresponds to the maximum Carnot efficiency for the parameters used by ACP.
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Fig. 5. The Darboux-modified zero-point action. It starts at the normal h̄
2 value at x = 0 and

goes to − h̄
2 at large values of x. The shape is that of a usual kink (switching) function between

± h̄
2 for large values of the parameter. For small λ values see Fig. 6.
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Fig. 6. The same as in the previous figure but for a different orientation to emphasize that at low

values of λ the general Riccati thermodynamic vacuum kink deviates from the common definition

of a kink and even turns singular for λc = (x− sinhx)/2.
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Fig. 7. The usual vacuum entropy and the Darboux-modified one.
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Fig. 8. The same as in the previous figure but for a different orientation.
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Fig. 9. The one-parameter Darboux-modified Fermi-Dirac action of negative T.
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Fig. 10. The one-parameter Darboux-modified Fermi-Dirac entropy of negative T.



Plots not discussed in the text of the work.
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Fig. 11. Heat capacity for the one-parameter Planck case compared to the standard case.
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Fig. 12. Heat capacity for the one-parameter vacuum case compared to the standard case.
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Fig. 13. Heat capacity for the one-parameter Fermi-Dirac case of negative T compared with the

nonparametric case.


