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Newton’s laws of motion in the form of a Riccati equation
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We discuss two applications of a Riccati equation to Newton’s laws of motion. The first one is the motion
of a particle under the influence of a power law central potehtja) =kr€. For zero total energy we show that
the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic
Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a
Riccati equation. A second application in classical mechanics, where again the Riccati equation appears natu-
rally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry
to generalize and solve such problems.
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[. INTRODUCTION case of a central potentidf(r) is given by the standard
expression
It is known that Riccati equations, in general, of the type ,
1 . I
dy E=§mr2+ S+ V(). 4
&zf(x)y2+g(x)y+ h(x), ) 2mr

] o o ) ] Taking a derivative with respect to time of E@l) results
find _surprlsmgly many applications in physics and math_-into a second fundamental equation of the form
ematics. For example, supersymmetric quantum mechanics

[1],_variationa| calcu!u$2], nonlinegr physic$_3], renormal- _ 12 dv(n)
ization group equations for running coupling constants in mr——+ T =0. 5)
quantum field theoriglgt], and thermodynamid$] are just a mr

few topics where Riccati equations play a key role. The mai

reason for their ubiquity is that the change of function %peuahzmg from now on to a power law potentjé]

V(r)=kré, (6)

1| d g

y=——[—(|nz)—— (2 : .

fldx 2 wherek is the coupling constant and the exponergan be
either positive or negative, we obtain from E§)

turns it into linear second-order differential equations of the

form mrr 12
V(r)= — T + 5 (7)
dz | d dz [g? 1dg d emr
——|=Inf|——|=——z——+h——Inf|z=0 (3) i o .
dx? \dx dx |4 2dx dx Inserting the last equation in E¢4) gives
that stand as basic mathematical background for many areas 1 ., /11 I mrr
of physics. S mr + §+; W_T_EZO' (8

Since the Riccati equation is a widely studied nonlinear
equation, knowing that the physical system under considerc|
ation can be brought into Riccati form has certainly many,

advantages. the case&k<<0. To explicitly derive from Eq(8) the Riccati

lL:S’ theiﬁfqtre, of interest tg I?)Ok:r?.r y?.t dtlffe(rjent phyls_lcal equation we pasgas it is costummary in central potential
problems: that are governed by this Trst-order noniineap roblems to an angled as a free variabl@i.e., we consider
equation. This can be a starting point to new avenues i (6(1))]. With

investigating analytical solutions of yet unsolved problems.
In this paper we concentrate mainly on topics from classical

nder the assumption dE=0, this expression leads to a
Riccati form. Obviously withE=0, we restrict ourselves to

. . . I dr
mechanics and show that certain types of Newton’s laws of f=——, r'=—, 9
motion are equivalent to the Riccati equation. mr? de
IIl. THE POWER LAW CENTRAL POTENTIALS and introducing
After implementation of the angular momentum conser- o= l (10)
vation law, the equation for the energy conservation in the r’
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it can be readily shown, after some algebraic manipulations, X
that Eq.(8) reduces to d —)
dx q
et2 , e+2 " f 2(X)+a=f—x , (16
w = 2 w +T. ( ) q ¢ - +b

This is the Riccati equation for the motion of a particle in a . )

central power law potential assumilig=0. It is worth not-  Wherea andb are integration constants and

ing that no information about the coupling constargnters

the Riccati equationill). Essentially what we have shown is ¢(z)52f f(z2)dz (17)
that any solution of Eq(4) will also satisfy Eq.(11). The

inverse is not necessarily true and should be examined i
detail. Indeed, the coupling constaktshould be explicitly
contained in the solution far(#) (see below.

A special case that deserves to be briefly mentioned is
=—2. With this exponent, the choidé=0 is, in general,
only possible if (2/2m)+k<0. Then directly from Eq(4)
we conclude that'/r is a constant that, of course, is com- mJr, 2
patible with the Riccati equatiofil). However, this constant \/ZmV(rl) ——4b
cannot be determined by means of Efjl). This feature is M
also inherent in the general case. . . o ] )

To discuss the case# 2, we first solve the Riccati equa- that, with a proper identification df, is the same as directly

tion (11). The solution can be easily found to be integrating Eq.(5). The interplay between the Ermakov
equation and the central potential problems can be a useful

sin (e+2) 0+ B] tool of studying both problems. We conjecture that certain
= co3(e12)6+B]+1’ (12 invariants of the Ermakov equation could be also applied to
the central potential problems.

rIlaking p=conste=m and suitably rescaling the distance
with the masam, Eq. (15) is essentially identical to Ed5).
Indeed, in this case the integrals in Efj7) give

1 r drl

_ €t+2 B
w(@)—ta!‘(Te-FE

where plays a role of the integration constant. Going back
to the definition ofw in Eq. (10) we arrive at a solution for Ill. COSMOLOGICAL ANALOGY

r(6) We want to point out here a beautiful but formal cosmo-
logical analogy to the results of the preceding section. We
6)= R ' (13) recall that in deriving the Riccati equati@8) we relied on a
{1+ cod (e+2)6+ B2 power law potentia(6), a new parametef [the angle given
in Eg. (9)], and the assumptioR=0. The analogy to cos-
whereR is a constant. As in the case=—2 this constant mology is based on these observations. In Friedmann-
can only be determined by inserting E4.1) into Eq. (4). Robertson-Walker space-time the set of Einstein’s equations

The result is with the cosmological constant set to zero reduce to dif-
2\ Wer2) fgrential equation_s for.the scale faca(rt_), which is a func_;-
R— ('_) (14) tion of the comoving time. Together with the conservation
m|K| of energy-momentum tensor they are given by
The last two equations represent then the analytical solution 3a(t)=—47G[p+3p(p)la(t), (19
of the posed problem. We obtained this solution by trans-
forming the original problem into a Riccati equation. It a(t)a(t)+2a%(t)+2x=47G[p—p(p)]a%(t), (20)

might be that the laws of motion in Riccati form are only a

curiosity. Given, however, the fact that only a few analytical . d

solutions of the central potential problem are known, it is pad(t)= &[az(er p(p)]. (21)
certainly a useful curiosity. Furthermore, it is not excluded

that this way opens more general methods to solve problems yhe apoveG is the Newtonian coupling constatjis the
in mechanics. In this context, we would like to mention herepressurep is the density, andk can take the values 81.

a yet different connection of the central potential prObIemChoosing the equation of state to be barotropic
with the Ermakov nonlinear differential equatipn]. We re- '

fer to the following form of the latter equatidi@] p(p)=(y—1)p, (22)
d?y d?q(x) 1 |y essentially fixep to obey a power law behavior of the form
A0 —5 +Y() — o = ——f —), (15 ¥ P
dx dx ge(x) \d a3
=pol — , 23
which can be solved by the integrals p=po ao @3
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and the remaining equations faft) reduce to a single equa- This resembles supersymmetric quantum mechanics and we
tion, viz, might be tempted to compars, to Witten's superpotential.
To the new force we again add a quadratic function with a

a(t) a(t) 2 K 0 3 1 o4 friction coefficient\; such that the new equation of motion
at)  “\a) +Ca2(t) =0, c=5c-1 (249  pecomes
Introducing the conformal timey by v=y— N\ (32)
dzy 1 This has the advantage that per constructigiis a particular
qt " aln) (25  solution of Eq.(31). Equipped with this fact, one can pro-

ceed to construct the general solution that is a standard pro-

it can be seen that E(R4) is equivalent to a Riccati equation cedure in the general theory of the Riccati equation. Before

in the functionu=a’/a, where the dot means derivation with doing so, itis instructive to dwell upon the physical meaning

respect toy of the new forcey. Imposingg’ —(a—\)(r?/a?)>0, it
can be seen thai>0. Moreover, as obvious from Eq&98)

u’'+cu+ kc=0. (26)  and(30), y goes to a constant for largeand has a kinklike

behavior. We can then envisage a situation wheres a

This cosmological Riccati equation has been previously obtswitch-on’ function for a force becoming constant at some

tained by Faraori9] and also discussed by Rogl0] in the  time. As mentioned above, by construction the prob(&t)

context of late cosmological acceleration. The formal analis solvable becauss, is a particular solution of E¢31). By

ogy to the mechanical case is obvious: the conditon0  invoking the standard Bernoulli ansatz for the general solu-

corresponds ta\ =0, the angle is replaced by the confor- tion vy, namely,

mal time », and whereas in the mechanical example we had

a power law behavior of the potential, the barotropic equa- 1

tion of state forces upop to satisfypca™3”. As Eq. (11) Vg=UpT V& (32
does not contain the coupling constantthe cosmological

Riccati equation(26) loses the information abo@. we arrive at the differential equatiofspecial case of the

Bernoulli equation for V,
IV. QUADRATIC FRICTION

Starting with a constant forag(free fall, constant electric V=280pVH A, (33
field, etc) and adding a quadratic friction with a positive Wit
friction coefficientyr>0, we have, per excellence, a Riccati fting v, as
equation for the Newton'’s law of motion 1w
P
. =———, 34
v=g'—av? (27) Up Ny W, (34)
with g’=g/m anda=v/m. The general solutiofwhich for  where
reasons to be seen later in the text we denote )yinvolves
a free parametex and read$11] sze*”lf vpdt, (35
- riet—ae o one is led to the solution fov
vp(tig' ah)=— eyl r=ag’. (29
_ _ Ay J Wadt+C
In the following we borrow some techniques from supersym- V= (36)
metric quantum mechanics. However, we do not follow W2
strictly the supersymmetric scheme as the purposes in the P
quantum case and the mechanical case are quite different. Wee general solution is then given by
define a new time-dependent force by
2
' . ’ 2 ’ WP
y(tig 1a|)\!)\1)Evp(t;g va!)\)+)\lvp(t;g !al)\)l Ug:Up+—. (37)
(29 Mf W2dt+C

with a new parametex;>0. We emphasize that E(R9) is

a definition given through the solution ER8). From Eq. The initial value problemy(0)=uv,, is solved by fixingC
(27) it can be then deduced that the following equivalentthrough

form of y can be obtained

r{l—»a 1
y=9'—(a=Xpvl. (30 Uo_;(_1+)\)26' (38

047602-3



BRIEF REPORTS PHYSICAL REVIEW E 65 047602

Up to integrals, the equation of moti@81) is solved. Setting V. CONCLUSION
—a26 ; ; ;
?orn? , we can rewrite Eq(28) in the more convenient In this paper we have pointed out the usefulness of the

Riccati equation in studying certain mechanical problems.
r We derived a Riccati equation for a central potential problem
vpzatanr(rwb‘). (399  of the power law type assuming=0. This led us to an
analytical solution of the problem. In a second step, we gen-
ThenW, can be computed explicitly eralized the system of a constant force plus a quadratic fric-
tion to a time-dependent force and friction. We argued that
1 this time-dependent force serves as a ‘switch-on’ function.
= o (40)  The problem turned out to be solvable by means of a con-
[coshrt+4)]* struction similar to supersymmetric quantum mechanics. As
indicated in the text, both applications can be generalized.

Wy

It suffices to assumé&,;=na, ne N leading to integrals of

the typeScosh "(x)dx, which can be solved in a closed ana-
lytical form by recursion formulas. Of course, the procedure
outlined here can be generalized by starting with more com-
plicated forces instead of the constant one. M.N. thanks CONACYyT for financial support.
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