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Newton’s laws of motion in the form of a Riccati equation
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We discuss two applications of a Riccati equation to Newton’s laws of motion. The first one is the motion
of a particle under the influence of a power law central potentialV(r )5kre. For zero total energy we show that
the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic
Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a
Riccati equation. A second application in classical mechanics, where again the Riccati equation appears natu-
rally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry
to generalize and solve such problems.
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I. INTRODUCTION

It is known that Riccati equations, in general, of the ty

dy

dx
5 f ~x!y21g~x!y1h~x!, ~1!

find surprisingly many applications in physics and ma
ematics. For example, supersymmetric quantum mecha
@1#, variational calculus@2#, nonlinear physics@3#, renormal-
ization group equations for running coupling constants
quantum field theories@4#, and thermodynamics@5# are just a
few topics where Riccati equations play a key role. The m
reason for their ubiquity is that the change of function

y52
1

f F d

dx
~ ln z!2

g

2G ~2!

turns it into linear second-order differential equations of
form

d2z

dx2
2S d

dx
ln f D dz

dx
2Fg2

4
2

1

2

dg

dx
1h2

d

dx
ln f Gz50 ~3!

that stand as basic mathematical background for many a
of physics.

Since the Riccati equation is a widely studied nonline
equation, knowing that the physical system under consi
ation can be brought into Riccati form has certainly ma
advantages.

It is, therefore, of interest to look for yet different physic
problems that are governed by this first-order nonlin
equation. This can be a starting point to new avenues
investigating analytical solutions of yet unsolved problem
In this paper we concentrate mainly on topics from class
mechanics and show that certain types of Newton’s laws
motion are equivalent to the Riccati equation.

II. THE POWER LAW CENTRAL POTENTIALS

After implementation of the angular momentum cons
vation law, the equation for the energy conservation in
1063-651X/2002/65~4!/047602~4!/$20.00 65 0476
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case of a central potentialV(r ) is given by the standard
expression

E5
1

2
mṙ21

l 2

2mr2
1V~r !. ~4!

Taking a derivative with respect to time of Eq.~4! results
into a second fundamental equation of the form

mr̈2
l 2

mr3
1

dV~r !

dr
50. ~5!

Specializing from now on to a power law potential@6#

V~r !5kre, ~6!

wherek is the coupling constant and the exponente can be
either positive or negative, we obtain from Eq.~5!

V~r !52
mr̈r

e
1

l 2

emr2
. ~7!

Inserting the last equation in Eq.~4! gives

1

2
mṙ21S 1

2
1

1

e D l

mr2
2

mr̈r

e
2E50. ~8!

Under the assumption ofE50, this expression leads to
Riccati form. Obviously withE50, we restrict ourselves to
the casek,0. To explicitly derive from Eq.~8! the Riccati
equation we pass~as it is costummary in central potentia
problems! to an angleu as a free variable@i.e., we consider
r „u(t)…]. With

u̇5
l

mr2
, r 8[

dr

du
, ~9!

and introducing

v5
r 8

r
, ~10!
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it can be readily shown, after some algebraic manipulatio
that Eq.~8! reduces to

v85
e12

2
v21

e12

2
. ~11!

This is the Riccati equation for the motion of a particle in
central power law potential assumingE50. It is worth not-
ing that no information about the coupling constantk enters
the Riccati equation~11!. Essentially what we have shown
that any solution of Eq.~4! will also satisfy Eq.~11!. The
inverse is not necessarily true and should be examine
detail. Indeed, the coupling constantk should be explicitly
contained in the solution forr (u) ~see below!.

A special case that deserves to be briefly mentionede
522. With this exponent, the choiceE50 is, in general,
only possible if (l 2/2m)1k,0. Then directly from Eq.~4!
we conclude thatr 8/r is a constant that, of course, is com
patible with the Riccati equation~11!. However, this constan
cannot be determined by means of Eq.~11!. This feature is
also inherent in the general case.

To discuss the caseeÞ2, we first solve the Riccati equa
tion ~11!. The solution can be easily found to be

v~u!5tanS e12

2
u1

b

2 D5
sin@~e12!u1b#

cos@~e12!u1b#11
, ~12!

whereb plays a role of the integration constant. Going ba
to the definition ofv in Eq. ~10! we arrive at a solution for
r (u)

r ~u!5
R

$11cos@~e12!u1b#%1/(e12)
, ~13!

whereR is a constant. As in the casee522 this constant
can only be determined by inserting Eq.~11! into Eq. ~4!.
The result is

R5S l 2

muku D
1/(e12)

. ~14!

The last two equations represent then the analytical solu
of the posed problem. We obtained this solution by tra
forming the original problem into a Riccati equation.
might be that the laws of motion in Riccati form are only
curiosity. Given, however, the fact that only a few analytic
solutions of the central potential problem are known, it
certainly a useful curiosity. Furthermore, it is not exclud
that this way opens more general methods to solve probl
in mechanics. In this context, we would like to mention he
a yet different connection of the central potential proble
with the Ermakov nonlinear differential equation@7#. We re-
fer to the following form of the latter equation@8#

q~x!
d2y

dx2
1y~x!

d2q~x!

dx2
5

1

q2~x!
f S y

qD , ~15!

which can be solved by the integrals
04760
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E dx

q2~x!
1a5E

dS x

q
D

AfS x

q
D 1b

, ~16!

wherea andb are integration constants and

f~z![2E f ~z!dz. ~17!

Taking p5const5m and suitably rescaling the distancer
with the massm, Eq. ~15! is essentially identical to Eq.~5!.
Indeed, in this case the integrals in Eq.~17! give

t2t05
1

m
E

r 0

r dr1

A2mV~r 1!2
l 2

r 1

1b

~18!

that, with a proper identification ofb, is the same as directly
integrating Eq. ~5!. The interplay between the Ermako
equation and the central potential problems can be a us
tool of studying both problems. We conjecture that cert
invariants of the Ermakov equation could be also applied
the central potential problems.

III. COSMOLOGICAL ANALOGY

We want to point out here a beautiful but formal cosm
logical analogy to the results of the preceding section.
recall that in deriving the Riccati equation~9! we relied on a
power law potential~6!, a new parameteru @the angle given
in Eq. ~9!#, and the assumptionE50. The analogy to cos-
mology is based on these observations. In Friedma
Robertson-Walker space-time the set of Einstein’s equat
with the cosmological constantL set to zero reduce to dif
ferential equations for the scale factora(t), which is a func-
tion of the comoving timet. Together with the conservatio
of energy-momentum tensor they are given by

3ä~ t !524pG@r13p~r!#a~ t !, ~19!

a~ t !ä~ t !12ȧ2~ t !12k54pG@r2p~r!#a2~ t !, ~20!

ṗa3~ t !5
d

dt
@a2~r1p~r!#. ~21!

In the aboveG is the Newtonian coupling constant,p is the
pressure,r is the density, andk can take the values 0,61.
Choosing the equation of state to be barotropic,

p~r!5~g21!r, ~22!

essentially fixesr to obey a power law behavior of the form

r5r0S a

a0
D 23g

, ~23!
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and the remaining equations fora(t) reduce to a single equa
tion, viz,

ä~ t !

a~ t !
1cS ȧ~ t !

a~ t !
D 2

1c
k

a2~ t !
50, c[

3

2
c21. ~24!

Introducing the conformal timeh by

dh

dt
5

1

a~h!
, ~25!

it can be seen that Eq.~24! is equivalent to a Riccati equatio
in the functionu5a8/a, where the dot means derivation wit
respect toh

u81cu21kc50. ~26!

This cosmological Riccati equation has been previously
tained by Faraoni@9# and also discussed by Rosu@10# in the
context of late cosmological acceleration. The formal an
ogy to the mechanical case is obvious: the conditionE50
corresponds toL50, the angleu is replaced by the confor
mal timeh, and whereas in the mechanical example we h
a power law behavior of the potential, the barotropic eq
tion of state forces uponr to satisfyr}a23g. As Eq. ~11!
does not contain the coupling constantk, the cosmological
Riccati equation~26! loses the information aboutG.

IV. QUADRATIC FRICTION

Starting with a constant forceg ~free fall, constant electric
field, etc.! and adding a quadratic friction with a positiv
friction coefficientn.0, we have, per excellence, a Ricca
equation for the Newton’s law of motion

v̇5g82av2, ~27!

with g8[g/m anda[n/m. The general solution~which for
reasons to be seen later in the text we denote byvp) involves
a free parameterl and reads@11#

vp~ t;g8,a,l!5
r

a S ert2le2rt

ert1le2rt D , r[ag8. ~28!

In the following we borrow some techniques from supersy
metric quantum mechanics. However, we do not follo
strictly the supersymmetric scheme as the purposes in
quantum case and the mechanical case are quite differen
define a new time-dependent force by

g~ t;g8,a,l,l1![ v̇p~ t;g8,a,l!1l1vp
2~ t;g8,a,l!,

~29!

with a new parameterl1.0. We emphasize that Eq.~29! is
a definition given through the solution Eq.~28!. From Eq.
~27! it can be then deduced that the following equivale
form of g can be obtained

g5g82~a2l1!vp
2 . ~30!
04760
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This resembles supersymmetric quantum mechanics and
might be tempted to comparevp to Witten’s superpotential.

To the new force we again add a quadratic function wit
friction coefficientl1 such that the new equation of motio
becomes

v̇5g2l1v2. ~31!

This has the advantage that per constructionvp is a particular
solution of Eq.~31!. Equipped with this fact, one can pro
ceed to construct the general solution that is a standard
cedure in the general theory of the Riccati equation. Bef
doing so, it is instructive to dwell upon the physical meani
of the new forceg. Imposing g82(a2l1)(r 2/a2).0, it
can be seen thatg.0. Moreover, as obvious from Eqs.~28!
and ~30!, g goes to a constant for larget and has a kinklike
behavior. We can then envisage a situation whereg is a
‘switch-on’ function for a force becoming constant at som
time. As mentioned above, by construction the problem~31!
is solvable becausevp is a particular solution of Eq.~31!. By
invoking the standard Bernoulli ansatz for the general so
tion vg , namely,

vg5vp1
1

V
, ~32!

we arrive at the differential equation~special case of the
Bernoulli equation! for V,

V̇52l1vpV1l1 . ~33!

Writing vp as

vp52
1

l1

Ẇp

Wp
, ~34!

where

Wp5e2l1*vpdt, ~35!

one is led to the solution forV

V5

l1E Wp
2dt1C

Wp
2

. ~36!

The general solution is then given by

vg5vp1
Wp

2

l1E Wp
2dt1C

. ~37!

The initial value problem,v(0)5v0, is solved by fixingC
through

v02
r

a S 12l

11l D5
1

C
. ~38!
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Up to integrals, the equation of motion~31! is solved. Setting
l5e22d, we can rewrite Eq.~28! in the more convenien
form

vp5
r

a
tanh~rt 1d!. ~39!

ThenWp can be computed explicitly

Wp5
1

@cosh~rt 1d!#l1 /a
. ~40!

It suffices to assumel15na, nPN leading to integrals of
the type*cosh2n(x)dx, which can be solved in a closed an
lytical form by recursion formulas. Of course, the procedu
outlined here can be generalized by starting with more co
plicated forces instead of the constant one.
hy

in

i,

04760
e
-

V. CONCLUSION

In this paper we have pointed out the usefulness of
Riccati equation in studying certain mechanical problem
We derived a Riccati equation for a central potential probl
of the power law type assumingE50. This led us to an
analytical solution of the problem. In a second step, we g
eralized the system of a constant force plus a quadratic
tion to a time-dependent force and friction. We argued t
this time-dependent force serves as a ‘switch-on’ functi
The problem turned out to be solvable by means of a c
struction similar to supersymmetric quantum mechanics.
indicated in the text, both applications can be generalize
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