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Gravitational bouncing of a quantum ball: Room for Airy’s function Bi

Haret C. Rosu
Instituto de F́ısica de la Universidad de Guanajuato, Apdo Postal E-143, León, Guanajuato, México

I apply (i) a classical version of the Ermakov-Lewis procedure and (ii) the strictly isospectral supersymmetric approach to
the Schroedinger free fall of the bouncing ball type. In both cases, the Airy function Bi, which in general is eliminated as being
unphysical, plays a well-defined role. Relevant plots are displayed.

PACS number(s): 03.65.-w, 11.30 Pb

I. INTRODUCTION

Bouncing of a cold atomic cloud has been first ob-
served in the laboratory in 1993 [1]. It has been shown
that cold atoms dropped onto an “atomic mirror” can
be used for holographic manipulation of atomic beams
[2]. More recently, bouncing Bose-Einstein condensates
have been examined in the laboratory [3]. Here, we con-
sider the toy model of a Schroedinger quantum particle
bouncing on a perfectly reflecting surface in a linear grav-
itational field, which is known as the quantum bouncing
ball [QBB] problem [4]. In the QBB case, one should
solve the Schroedinger equation with the potential

VQBB(z) = mgz, if z > 0

VQBB(z) = ∞ , if z ≤ 0 . (1)

By the scalings s = z/lg and S = E/mglg, where

lg =
(

h2

2m2g

)1/3

is the “gravitational length” unit, the

stationary QBB Schroedinger equation becomes dimen-
sionless

d2ψ

ds2
− (s − S)ψ = 0 . (2)

The general solution is a superposition of Airy functions
Ai(s) and Bi(s), but Airy’s Bi is discarded for going to
infinity at large s. Moreover, the perfectly reflecting
boundary requires the wave function be zero at the ori-
gin and therefore the physical eigenmodes are written
as ψn(s) = NnAi(s − Sn), where Nn is the normalization
constant and Sn are the zeros of the Ai function [4]. In
other words, a shift of the Airy’s argument is performed
placing the Airy zeros at the origin. To the best of the
author’s knowledge all the previous works in this field
made use of only Airy function Ai of shifted argument.
The main purpose here is to show that there are two tech-
niques in which the Bi function could still be employed
without leading to unphysical results. One of them is
the Ermakov-Lewis (EL) procedure, which is presented
in section II and the other one is the strictly isospectral
supersymmetric (SUSY) approach enclosed in section III.
A small conclusion section ends up the work.

II. CLASSICAL ERMAKOV-LEWIS APPROACH

FOR QBB

I will use the version of the EL approach [5] that I
introduced in previous works in collaboration [6]. Eq. (2)
can be mapped in a known way to the canonical equations
for a classical point particle of unit mass, generalized
coordinate q = ψ, momentum p = ψ̇, (i.e., velocity v =
ψ̇), where the dot means total derivative with respects
to s, i.e., we identify the coordinate s with the classical
Hamiltonian time. Thus, one is led to

q̇ ≡
dq

ds
= p (3)

ṗ ≡
dp

ds
= (s − S)q . (4)

These equations describe the canonical motion for a clas-
sical point particle as derived from the time-dependent
Hamiltonian of the inverted oscillator type

Hcl(s) =
p2

2
− (s − S)

q2

2
. (5)

For this classical Hamiltonian the triplet of phase-space

functions T1 = p2

2 , T2 = pq, and T3 = q2

2 forms a dynam-

ical Lie algebra, i.e., Hcl =
∑3

n=1 hn(s)Tn(p, q), which
is closed with respect to the Poisson bracket, namely
{T1, T2} = −2T1, {T2, T3} = −2T3, {T1, T3} = −T2. Us-
ing this algebra Hcl reads

Hcl = T1 − (s − S)T3 . (6)

The Lewis invariant I belongs to the dynamical algebra,
i.e., one can write I(s) =

∑

r ǫr(s)Tr, and by means of
∂I
∂s = −{I,H} one is led to the following equations for
the functions ǫr(s)

ǫ̇r +
∑

n

[

∑

m

Cr
nmhm(s)

]

ǫn = 0 , (7)

where Cr
nm are the structure constants of the Lie algebra

that have been already given above. Thus, we get

1



ǫ̇1 = −2ǫ2

ǫ̇2 = −(s − S)ǫ1 − ǫ3 (8)

ǫ̇3 = −2(s− S)ǫ2 .

The solution of this system can be readily obtained by
setting ǫ1 = ρ2 giving ǫ2 = −ρρ̇ and ǫ3 = ρ̇2 + 1

ρ2 , where

ρ is the solution of the Milne-Pinney (MP) equation
[7], ρ̈− (s − S)ρ = 1

ρ3 . Since Pinney’s note in 1950 it is
widely known how to write ρ as a function of the two
particular solutions of the corresponding parametric os-
cillator problem. We have followed the method of Eliezer
and Gray [8] in order to write ρ(s) as a combination of
Airy functions that satisfy the initial conditions as given
by those authors. Thus, we used in all our calculations
the following formula

ρ1(s) = N1

[

(Ai(s − S1) + Bi(s − S1))
2 + Bi2(s − S1)

]1/2
,

(9)

i.e., we used the two Airy functions corresponding to
the ground state. In Eq. (9), S1 = (9π/8)2/3 and
N1 = (8π2/9)1/6 [4]. In terms of the MP solution ρ(s)
the Lewis invariant reads

In(s) =
(ρnp − ρ̇nq)2

2
+

q2

2ρ2
n

=
1

2

(

ρnψ̇n − ρ̇nψn

)2

+
1

2

(

ψn

ρn

)2

. (10)

For example, one can check by direct calculation that
I1(s) = 1

2 since according to the Eliezer-Gray interpreta-
tion the EL invariant should be 1

2h
2 where h is the coeffi-

cient of the inverse cubic nonlinearity in the aforewritten
MP equation where h = 1.

In the EL approach the angular quantities are given
by the following formulas [9]

∆θd =

∫ T

0

[ 1

ρ2
−

1

2

d

ds′
(ρ̇ρ) + ρ̇2

]

ds
′

(11)

and

∆θg =
1

2

∫ T

0

[ d

ds′
(ρ̇ρ) − 2ρ̇2

]

ds
′

, (12)

for the dynamical and geometrical angles, respectively.
Thus, the total angle will be

∆θt = ∆θd + ∆θg =

∫ T

0

1

ρ2
ds

′

. (13)

Plots of all these angles calculated using ρ1 are displayed
in Figs 1,2,3, respectively.

III. STRICTLY ISOSPECTRAL SUSY

BOUNCING BALL

Factorizations of one-dimensional Schroedinger oper-
ators have been first discussed in the SUSY context by
Witten in 1981 [10], and are well known in the mathemat-
ical literature in the broader sense of Darboux covariance
of Schroedinger equations [11].

In 1984, Mielnik [12] introduced a different factoriza-
tion of the quantum harmonic oscillator based on the
general Riccati solution here denoted by wg. As a result,
Mielnik obtained a one-parameter family of potentials
with exactly the same spectrum as that of the harmonic
oscillator. Mielnik’s method offers an interesting possi-
bility to construct families of potentials strictly isospec-
tral with respect to the initial (bosonic) one by sim-
ply taking into account the most general superpotential
(i.e., the general Riccati solution). Thus, in the QBB

case one requires V+(s) = w2
g +

dwg

ds , where V+ is the
fermionic partner potential of VQBB. It is easy to see
that one particular solution to this equation is wp = w(s),
where w(s) = −ψ′

1/ψ1 is the common Witten superpoten-
tial. One is led to consider the following Riccati equa-
tion w2

g +
dwg

ds = w2
p +

dwp

ds , whose general solution can

be written down as wg(s) = wp(s) + 1
v(s) , where v(s) is

an unknown function. Using this ansatz, one obtains for
the function v(s) the following Bernoulli equation

dv(s)

ds
− 2 v(s)wp(s) = 1, (14)

that has the solution

v(s) =
I0(s) + λ

ψ2
1(s)

. (15)

The integral I0(s) =
∫ s

0 ψ2
1(y) dy is a step-like function

as one can see in Fig. 4. On the other hand, λ > 0
is an integration constant thereby considered as a free
parameter, which is a measure of the contribution of the
second linearly independent solution, i.e., the Airy Bi in
the QBB case, as we argued elsewhere [13]. Thus, wg(s)
can be written as follows

wg(s;λ) = wp(s) +
d

ds

[

ln(I0(s) + λ)
]

= −
d

ds

[

ln

(

ψ1(s)

I0(s) + λ

)

]

. (16)

Finally, one easily gets the parametric family of poten-
tials

V(s;λ) = w2
g(s;λ) −

dwg(s;λ)

ds

= VQBB(s) − 2
d2

ds2

[

ln(I0(s) + λ)
]
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= VQBB(s) −
4ψ1(s)ψ

′

1(s)

I0(s) + λ
+

2ψ4
1(s)

(I0(s) + λ)2
. (17)

All V(s;λ) have the same SUSY partner potential V+(s)
obtained by deleting the ground state. They may be
considered as a sort of intermediates between the bosonic
potential VQBB(s) and the fermionic counterpart V+(s).
A plot of V(s;λ) is given in Fig. 5. From Eq. (16) one can
infer the ground state wave functions for the potentials
V(s;λ) as follows

ϕ1(s;λ) = N(λ)
ψ1(s)

I0(s) + λ
, (18)

where N(λ) is a normalization factor that can be shown
to be of the form N(λ) =

√

λ(λ + 1). The normalized
functions ψ1 and ϕ1 are plotted in Fig. 6.

IV. CONCLUSION

Airy’s function Bi can find a place in the physics of
the quantum bouncing ball through two theoretical pro-
cedures connecting the Schroedinger equation with the
nonlinear Milne-Pinney equation and Riccati equation,
respectively. This may help in gaining further insight
in the problem of nonrelativistic quantum free fall. The
Lewis angles and phases that depend on the function Bi
through the Milne-Pinney function are important quan-
tities provided by the Ermakov-Lewis approach that is
here applied to a Schroedinger free fall problem for the
first time. These quantities are similar to Berry phases
and Hannay angles and in principle can be measured in
quantum bouncing ball experiments. On the other hand,
in the strictly isospectral supersymmetric method, the
contribution of the Bi function enters through the param-
eter λ [13]. However, although the results are physically
sound, it is still not clear what is the corresponding ex-
perimental configuration. In other words, it is not clear
how a strictly isospectral partner potential, such as the
one displayed in Fig. 5 can be produced experimentally.
For example, one may think of some particular micro-
scopic surface effects of the atomic mirror that might be
able to distort the interaction potential in the way the
SUSY scheme predicts.
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FIG. 0. Ermakov-Lewis invariant I1(s) cf. Eq. (10) [not in
the accepted version.
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FIG. 1. Lewis’ dynamical angle cf. Eq. (11).
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FIG. 2. Lewis’ geometric angle cf. Eq. (12).
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FIG. 3. Lewis’ total angle cf. Eq. (13).
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FIG. 4. The integral I0(s) of the strictly isospectral SUSY

QBB.
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FIG. 5. The strictly isospectral QBB gravitational potential

for λ = 1.
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FIG. 6. The normalized wave functions ψ1(s) (full line) and

ϕ1(s; 1) (dashed line).
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