Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1379
Evolution of spherical cavitation bubbles: parametric and closed-form solutions
Stefan C. Mancas
HARET CODRATIAN ROSU
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1063/1.4942237
Dynamics
"We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration. (C) 2016 AIP Publishing LLC."
American Institute of Physics
2016-02
Artículo
Stefan C. Mancas and Haret C. Rosu. (2016). Evolution of spherical cavitation bubbles: Parametric and closed-form solutions. Physics of Fluids 28, 022009 (2016). © 2016 AIP Publishing LLC.
FÍSICA
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Tamaño Formato  
PhyFluids28(2016)022009.pdf550.08 kBAdobe PDFVisualizar/Abrir