Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1382
Existence of periodic orbits in nonlinear oscillators of Emden–Fowler form
Stefan C. Mancas
HARET CODRATIAN ROSU
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.physleta.2015.11.009
Nonlinear oscillator
Emden–Fowler equation
Autonomous two-dimensional ODE system
Parametric solution
Invariant transformation
Pseudo-oscillator
"The nonlinear pseudo-oscillator recently tackled by Gadella and Lara is mapped to an Emden–Fowler (EF) equation that is written as an autonomous two-dimensional ODE system for which we provide the phase-space analysis and the parametric solution. Through an invariant transformation we find periodic solutions to a certain class of EF equations that pass an integrability condition. We show that this condition is necessary to have periodic solutions and via the ODE analysis we also find the sufficient condition for periodic orbits. EF equations that do not pass integrability conditions can be made integrable via an invariant transformation which also allows us to construct periodic solutions to them. Two other nonlinear equations, a zero-frequency Ermakov equation and a positive power Emden–Fowler equation, are discussed in the same context."
Elsevier Science BV
2016-01
Artículo
Stefan C. Mancas, Haret C. Rosu, Existence of periodic orbits in nonlinear oscillators of Emden–Fowler form, Physics Letters A, Volume 380, Issue 3, 2016, Pages 422-428.
FÍSICA
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Tamaño Formato  
PhysLettA380(2016)422.pdf566.49 kBAdobe PDFVisualizar/Abrir