Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1476
Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network
Luis Manuel Rosales Colunga
RAUL GONZALEZ GARCIA
Antonio de León Rodríguez
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.ijhydene.2010.08.137
Back propagation neural network
Dissolved CO2
Hydrogen
Redox potential
pH
Cheese whey
"Biological hydrogen production is an active research area due to the importance of this gas as an energy carrier and the advantages of using biological systems to produce it. A cheap and practical on-line hydrogen determination is desired in those processes. In this study, an artificial neural network (ANN) was developed to estimate the hydrogen production in fermentative processes. A back propagation neural network (BPNN) of one hidden layer with 12 nodes was selected. The BPNN training was done using the conjugated gradient algorithm and on-line measurements of dissolved CO2, pH and oxidation-reduction potential during the fermentations of cheese whey by Escherichia coli ΔhycA ΔlacI (WDHL) strain with or without pH control. The correlation coefficient between the hydrogen production determined by gas chromatography and the hydrogen production estimated by the BPNN was 0.955. Results showed that the BPNN successfully estimated the hydrogen production using only on-line parameters in genetically modified E. coli fermentations either with or without pH control. This approach could be used for other hydrogen production systems."
Elsevier B.V
2010-12
Artículo
Luis Manuel Rosales-Colunga, Raúl González García, Antonio De León Rodríguez, Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network, International Journal of Hydrogen Energy, Volume 35, Issue 24, 2010, Pages 13186-13192.
BIOLOGÍA Y QUÍMICA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Publicaciones Científicas Biología Molecular

Cargar archivos:


Fichero Tamaño Formato  
IntJHydrogenEnergy35(2010)13186.pdf238.13 kBAdobe PDFVisualizar/Abrir