Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1578
Lie algebra on synchronization of different systems: a generalized function for Hodgkin-Huxley neurons | |
JUAN GONZALO BARAJAS RAMIREZ ALEJANDRO RICARDO FEMAT FLORES GUALBERTO CELESTINO SOLIS PERALES | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
"In this contribution two results are taken: (1) The synchronization of noiseless Hodgkin- Huxley (HH) neurons is possible from robust feedback based on Lie algebra approaches and (2) the fact that, from Lie algebra of vector fields, the generalized synchronization of different (triangular form) chaotic systems can be used to derive an explicit synchronization function. Both results are extended to derive the synchronization function in HH neurons despite this systems are not in triangular form. Thus, the Lie algebra of vectors fields permits to establish a theoretical framework for finding the synchroniza- tion function in chaotic systems in face they have different model." | |
IPACS | |
2007 | |
Conferencia | |
PhysCon 2007 The 3rd International IEEE Scientific Conference on Physics and Control Lie algebra on synchronization of different systems: a generalized function for Hodgkin-Huxley neurons IPACS, E-library http://lib.physcon.ru/getfile.html?item=1297 , Potsdam, Alemania. September 2007 | |
MATEMÁTICAS | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Publicaciones Científicas Control y Sistemas Dinámicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
Physcon07.pdf | 102.43 kB | Adobe PDF | Visualizar/Abrir |