Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1585
Synchronization of chaotic systems with different order | |
ALEJANDRO RICARDO FEMAT FLORES GUALBERTO CELESTINO SOLIS PERALES | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1103/PhysRevE.65.036226 | |
"The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynamical evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense, i.e., the difference e = x 3 − x ′ 1 is close to zero for all time t >~ t 0 >~ 0 , where t 0 denotes the time of the control activation." | |
American Physical Society | |
2002-03 | |
Artículo | |
Ricardo Femat and Gualberto Solís-Perales. (2002). Synchronization of chaotic systems with different order. Physical Review E 65, 036226. © 2002 American Physical Society | |
MATEMÁTICAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Publicaciones Científicas Control y Sistemas Dinámicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
PhysRevE65(2002)036226.pdf | 231.51 kB | Adobe PDF | Visualizar/Abrir |