Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1609
Arresto cinético de la transformación martensítica en aleaciones Ni50Mn36In14 y Ni45Co5Mn36.8In13.2 y efecto magnetocalórico de la fase austenita en aleaciones Ni50Mn34In16-xSix (0.0 < x < 2.0) | |
FRANCISCO MANUEL LINO ZAPATA | |
JOSE LUIS SANCHEZ LLAMAZARES DAVID RIOS JARA | |
Acceso Abierto | |
30-11-2018 | |
Atribución-NoComercial-SinDerivadas | |
Aleaciones Heusler no estequiométricas Ni-Mn-In-X (X=Si, Co) Arresto cinético de la transformación martensítica Efecto magnetocalórico de la fase austenita | |
"En la presente tesis se estudia el arresto cinético de la transformación martensítica en aleaciones Heusler no estequiométricas de composición nominal Ni50Mn36In14 y Ni45Co5Mn36.8In13.2, así como el efecto magnetocalórico de la fase austenita en la serie Ni50Mn36-XIn14-XSiX (0.0 x 2.0). Ambos fenómenos derivados de la aplicación del campo magnético en torno a la transformación estructural martensítica y magnética, respectivamente. Todas las muestras estudiadas son cintas obtenidas por la técnica de temple rotatorio. Las aleaciones estudiadas, tanto recién fundidas como tratadas térmicamente, son monofásicas y a temperatura ambiente la fase austenita muestra una estructura cristalina cúbica de tipo B2 ó L21, mientras que su microestructura es de granos columnares cuyo tamaño medio no cambia apreciablemente con el tratamiento térmico. Las aleaciones Ni50Mn36In14 y Ni45Co5Mn36.8In13.2 transforman martensíticamente mientras que en la serie Ni50Mn36-XIn14-XSiX (0.0 x 2.0) la fase austenita existe en todo el intervalo de temperatura de nuestro estudio. Para todas las aleaciones, el incremento en el orden cristalo-químico que produce el tratamiento térmico lleva a un ligero aumento en las temperaturas de las transiciones estructural y magnética, al incremento de la magnetización de saturación en ambas fases y a un cambio más abrupto de la magnetización durante la transición (estructural o magnética). La variación de entropía magnética máxima SM peak para la fase austenita en la serie Ni50Mn36-XIn14-XSiX (0.0 x 2.0) muestra curvas de menor valor SM peak pero más anchas para las muestras recién solidificadas. Para una variación de campo magnético de 2 T las cintas recién solidificadas y tratadas térmicamente muestran valores de SM peak de 2.5 y 3.1 J·kg-1K -1, una capacidad de refrigeración, estimada como el producto de SM peak TFWHM, de 138 y 98 J·kg-1 y un rango de temperatura de trabajo TFWHM de 72 y 43 K. Para la aleación Ni50Mn36In14 recién fundida, el arresto cinético de la TM es parcial, este se observa desde µoH = 1 T, desapareciendo después de un tratamiento térmico corto (10 min.) a 1073 K, lo que sugiere una relación entre el ordenamiento cristalográfico de la fase austenita y el campo magnético en la transformación austenitamartensita. Para la aleación Ni45Co5Mn36.8In13.2 tratada térmicamente el arresto cinético es total a µoH = 7 T." "The focus of the present thesis is the study of both: the kinetic arrest of the martensitic transformation in non-stoichiometric Heusler alloys with nominal composition Ni50Mn36In14 and Ni45Co5Mn36.8In13.2 and the magnetocaloric effect in the austenitic phase of a Ni50Mn36-XIn14-XSiX (0.0 < x < 2.0) series. Both phenomena result from the influence of the applied magnetic field around the martensitic structural transformation and the magnetic transition of austenite, respectively. The samples studied were melt-spun ribbons fabricated by means of rapid solidification using the melt spinning technique. Both, as-quenched and annealing alloys are single-phase at room temperature and the austenite, or parent phase, shows B2 or L21-type cubic crystal structures, while the average size of their columnar-like grained microstructure does not change appreciably upon thermal annealing. Ni50Mn36In14 and Ni45Co5Mn36.8In13.2 alloys undergo martensitic transformation; for the Ni50Mn36-XIn14-XSiX (0.0 < x < 2.0) series austenite phase exists in the entire temperature range experiments made. For the studied alloys, the thermal annealing improves chemical and crystallographic ordering resulting in a slight increase in the structural and magnetic transition temperatures, an increase in the saturation magnetization of both phases, and a more abrupt change of magnetization across the structural or magnetic transitions. The variation of magnetic entropy change ∆SM(T) curves for as-solidified Ni50Mn36-XIn14-XSiX (0.0 < x < 2.0) are well broader and show lower variation of maximum magnetic entropy change │∆SMpeak│ values with respect to the annealed ones. For a magnetic field change of 2 T the as-solidified (annealed) samples show a peak value of the magnetic entropy change │∆SMpeak│ of 2.5 (3.1) J·kg-1K-1. For the same magnetic field change, the refrigerant capacity, estimated as the product of │∆SMpeak│·∆TFWHM of the ∆SM(T) curve, reaches values of 138 (98) J·kg-1. With working temperatures │∆TFWHM│of 72 and 43 K, respectively. For Ni50Mn36In14 melt-spun ribbons a moderate but progressive kinetic arrest of the austenite to martensite phase transformation is observed for an applied magnetic field of 1 T and above. It disappears after a short heat treatment of 10 min. at 1073 K, suggesting a relationship between crystallographic ordering of the austenite phase and the magnetic field on the austenite-martensite phase transition." | |
2017-11 | |
Tesis de doctorado | |
FÍSICA | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TDIPICYTL5A72017.pdf | 9.03 MB | Adobe PDF | Visualizar/Abrir |