Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1642
Stability and multiscroll attractors of control systems via the abscissa | |
EDGAR CRISTIAN DIAZ GONZALEZ BALTAZAR AGUIRRE HERNANDEZ JORGE ANTONIO LOPEZ RENTERIA ERIC CAMPOS CANTON CARLOS ARTURO LOREDO VILLALOBOS | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1155/2017/6743734 | |
Multiscroll attractors Kharitonov theorem Polynomials Inequalities Interval Family Computation Bounds | |
"We present an approach to generate multiscroll attractors via destabilization of piecewise linear systems based on Hurwitz matrix in this paper. First we present some results about the abscissa of stability of characteristic polynomials from linear differential equations systems; that is, we consider Hurwitz polynomials. The starting point is the Gauss–Lucas theorem, we provide lower bounds for Hurwitz polynomials, and by successively decreasing the order of the derivative of the Hurwitz polynomial one obtains a sequence of lower bounds. The results are extended in a straightforward way to interval polynomials; then we apply the abscissa as a measure to destabilize Hurwitz polynomial for the generation of a family of multiscroll attractors based on a class of unstable dissipative systems (UDS) of affine linear type." | |
Hindawi Publishing Corporation | |
2017 | |
Artículo | |
Edgar-Cristian Díaz-González, Baltazar Aguirre-Hernández, Jorge Antonio López-Rentería, Eric Campos-Cantón, and Carlos Arturo Loredo-Villalobos, “Stability and Multiscroll Attractors of Control Systems via the Abscissa,” Mathematical Problems in Engineering, vol. 2017, Article ID 6743734, 9 pages, 2017. https://doi.org/10.1155/2017/6743734. | |
MATEMÁTICAS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Publicaciones Científicas Control y Sistemas Dinámicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
MathematicalProblemsEngineering(2017)6743734.pdf | 2.61 MB | Adobe PDF | Visualizar/Abrir |