Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1719
Multivalued synchronization by Poincar coupling
Luis Javier Ortañón García Pimentel
Eric Campos Cantón
Alejandro Ricardo Femat Flores
Isaac Campos Cantón
MARCIAL BONILLA MARIN
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.cnsns.2013.02.015
Chaos synchronization
Poincar plane
Multimodal synchronization
"This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master–slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed."
Elsevier
2013
Artículo
L.J. Ontañón-Garcı́a, E. Campos-Cantón, R. Femat, I. Campos-Cantón, M. Bonilla-Marín, Multivalued synchronization by Poincaré coupling, Communications in Nonlinear Science and Numerical Simulation, Volume 18, Issue 10, 2013, Pages 2761-2768.
MATEMÁTICAS
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Publicaciones Científicas Control y Sistemas Dinámicos

Cargar archivos:


Fichero Tamaño Formato  
CommunNonlinearSci18(2013)2761.pdf3.59 MBAdobe PDFVisualizar/Abrir