Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1722
Information entropy production of maximum entropy markov chains from spike trains
RODRIGO COFRE
CESAR OCTAVIO MALDONADO AHUMADA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.3390/e20010034
Information entropy production
Discrete Markov chains
Spike train statistics
Gibbs measures
Maximum entropy principle
"The spiking activity of neuronal networks follows laws that are not time-reversal symmetric; the notion of pre-synaptic and post-synaptic neurons, stimulus correlations and noise correlations have a clear time order. Therefore, a biologically realistic statistical model for the spiking activity should be able to capture some degree of time irreversibility. We use the thermodynamic formalism to build a framework in the context maximum entropy models to quantify the degree of time irreversibility, providing an explicit formula for the information entropy production of the inferred maximum entropy Markov chain. We provide examples to illustrate our results and discuss the importance of time irreversibility for modeling the spike train statistics."
MDPI AG
2018
Artículo
Cofré, R.; Maldonado, C. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains. Entropy 2018, 20, 34.
MATEMÁTICAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Publicaciones Científicas Control y Sistemas Dinámicos

Cargar archivos:


Fichero Tamaño Formato  
Entropy20(2018)34.pdf1.32 MBAdobe PDFVisualizar/Abrir