Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1756
Preservation of a two-wing Lorenz-like attractor with stable equilibria
Luis Javier Ortañón García Pimentel
Eric Campos Cantón
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.jfranklin.2013.04.018
Synchronization
Chaos
Systems
Bifurcations
"In this paper, we present the preservation of a two-wing Lorenz-like attractor when in the Lorenz system a feedback control is applied, making two of its equilibria a sink. The forced system is capable of generating bistability and the trajectory settles down at one stable equilibrium point depending on the initial condition when the forced signal is zero. Due to a variation in the coupling strength of the control signal the symmetric equilibria of the Lorenz system move causing the basins of attraction to be the dynamic bounded regions that change accordingly. Thus, the preservation of a two-wing Lorenz-like attractor is possible using a switched control law between these dynamic basins of attraction. The forced switched systems also preserve multistability regarding the coupling strength and present multivalued synchronization according to the basin of attraction in which they were initialized. Bifurcations of the controlled system are used to exemplify the different basins generated by the forcing. An illustrative example is given to demonstrate the approach proposed."
Elsevier
2013
Artículo
L.J. Ontañón García, E. Campos-Cantón, Preservation of a two-wing Lorenz-like attractor with stable equilibria, Journal of the Franklin Institute, Volume 350, Issue 10, 2013, Pages 2867-2880.
MATEMÁTICAS
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Publicaciones Científicas Control y Sistemas Dinámicos

Cargar archivos:


Fichero Tamaño Formato  
JFranklinInstitute350(2013)2867.pdf2.64 MBAdobe PDFVisualizar/Abrir