Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1767
Constant-length random substitutions and gibbs measures
CESAR OCTAVIO MALDONADO AHUMADA
LILIANA PAULINA TREJO VALENCIA
Edgardo Ugalde
En Embargo
31-12-2019
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1007/s10955-018-2010-4
Gibbs measures
Random substitutions
Projective convergence
"This work is devoted to the study of processes generated by random substitutions over a finite alphabet. We prove, under mild conditions on the substitutions rule, the existence of a unique process which remains invariant under the substitution, and which exhibits a polynomial decay of correlations. For constant-length substitutions, we go further by proving that the invariant state is precisely a Gibbs measure which can be obtained as the projective limit of its natural Markovian approximations. We end up the paper by studying a class of substitutions whose invariant state is the unique Gibbs measure for a hierarchical two-body interaction."
Springer
2018
Artículo
Maldonado, C., Trejo-Valencia, L. & Ugalde, E. J Stat Phys (2018) 171: 269. https://doi.org/10.1007/s10955-018-2010-4
MATEMÁTICAS
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Publicaciones Científicas Control y Sistemas Dinámicos