Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1918
Electrum, the gold–silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules
Gregory Guisbiers
RUBEN MENDOZA CRUZ
Lourdes Bazán-Díaz
J. Jesús Velázquez Salazar
RAFAEL MENDOZA PEREZ
José Antonio Robledo Torres
JOSE LUIS RODRIGUEZ LOPEZ
JUAN MARTIN MONTEJANO CARRIZALES
Robert Whetten
Miguel Jose Yacaman
Acceso Abierto
Atribución-NoComercial-SinDerivadas
http://dx.doi.org/10.1021/acsnano.5b05755
Aberration corrected electron microscopy
Nanothermodynamics
Noble metals
Optical properties
Phase diagram
Polyhedra
Surface segregation
Thermal properties
"The alloy Au–Ag system is an important noble bimetallic phase, both historically (as “Electrum”) and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a “tilting” effect on the solidus–liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au–Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment."
American Chemical Society
2016
Artículo
ACS Nano 2016, 10, 1, 188-198
QUÍMICA
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Tamaño Formato  
ACSNano10(2016)188.pdf7.72 MBAdobe PDFVisualizar/Abrir