Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/1977
Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species
Fatima Berenice Salazar Badillo
Diana Sánchez Rangel
ALICIA BECERRA FLORA
Miguel Lopez_Gomez
MARIA FERNANDA NIETO JACOBO
ARTEMIO MENDOZA MENDOZA
JUAN FRANCISCO JIMENEZ BREMONT
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.plaphy.2015.07.003
Arabidopsis thaliana
Plant growth promotion
Polyamines
Split growth system
Trichoderma atroviride
Trichoderma virens
"Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis – Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus."
Elsevier
2015
Artículo
Fatima Berenice Salazar-Badillo, Diana Sánchez-Rangel, Alicia Becerra-Flora, Miguel López-Gómez, Fernanda Nieto-Jacobo, Artemio Mendoza-Mendoza, Juan Francisco Jiménez-Bremont, Arabidopsis thaliana polyamine content is modified by the interaction with different Trichoderma species, Plant Physiology and Biochemistry, Volume 95, 2015, Pages 49-56.
BIOLOGÍA MOLECULAR
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Publicaciones Científicas Biología Molecular

Cargar archivos:


Fichero Tamaño Formato  
PlantPhysiolBiochem95(2015)49.pdf4.5 MBAdobe PDFVisualizar/Abrir