Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2012
Two integrable classes of Emden-Fowler equations with applications in astrophysics and cosmology
Stefan C. Mancas
Haret Codratian Rosu
En Embargo
31-12-2019
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1515/zna-2018-0062
Emden–Fowler Equation
Painlevé
Reduction
Parametric Solution
Weierstrass Elliptic Function
"We show that some Emden–Fowler (EF) equations encountered in astrophysics and cosmology belong to two EF integrable classes of the type d2z/dχ2=Aχ−λ−2zn for λ=(n−1)/2 (class 1), and λ=n+1 (class 2). We find their corresponding invariants which reduce them to first-order nonlinear ordinary differential equations. Using particular solutions of such EF equations, the two classes are set in the autonomous nonlinear oscillator the form d2ν/dt2+adν/dt+b(ν−νn)=0, where the coefficients a, b depend only on λ,n. For both classes, we write closed-form solutions in parametric form. The illustrative examples from astrophysics and general relativity correspond to two n = 2 cases from class 1 and 2, and one n = 5 case from class 1, all of them yielding Weierstrass elliptic solutions. It is also noticed that when n = 2, the EF equations can be studied using the Painlevé reduction method, since they are a particular case of equations of the type d2z/dχ2=F(χ)z2 , where F(χ) is the Kustaanheimo-Qvist function."
Walter de Gruyter GmbH
2018
Artículo
Mancas, S. & Rosu, H. (2018). Two Integrable Classes of Emden–Fowler Equations with Applications in Astrophysics and Cosmology. Zeitschrift für Naturforschung A, 73(9), pp. 805-814. doi:10.1515/zna-2018-0062
FÍSICA
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales