Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2013
Traveling wave solutions for wave equations with two exponential nonlinearities | |
Stefan C. Mancas Haret Codratian Rosu MAXIMINO PEREZ MALDONADO | |
En Embargo | |
31-12-2019 | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1515/zna-2018-0055 | |
Dodd-Bullough Dodd-Bullough-Mikhailov Liouville Equation sine-Gordon sinh-Gordon Tzitzéica Weierstrass Function | |
"We use a simple method that leads to the integrals involved in obtaining the travelling-wave solutions of wave equations with one and two exponential nonlinearities. When the constant term in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained, while when that term is nonzero, all the basic travelling-wave solutions of Liouville, Tzitzéica, and their variants, as as well sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear physics and dynamical systems are found through a detailed study of the corresponding elliptic equations." | |
Walter de Gruyter GmbH | |
2018 | |
Artículo | |
Mancas, S., Rosu, H. & Pérez-Maldonado, M. (2018). Travelling-Wave Solutions for Wave Equations with Two Exponential Nonlinearities. Zeitschrift für Naturforschung A, 73(10), pp. 883-892. doi:10.1515/zna-2018-0055 | |
FÍSICA | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |