Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2013
Traveling wave solutions for wave equations with two exponential nonlinearities
Stefan C. Mancas
Haret Codratian Rosu
MAXIMINO PEREZ MALDONADO
En Embargo
31-12-2019
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1515/zna-2018-0055
Dodd-Bullough
Dodd-Bullough-Mikhailov
Liouville Equation
sine-Gordon
sinh-Gordon
Tzitzéica
Weierstrass Function
"We use a simple method that leads to the integrals involved in obtaining the travelling-wave solutions of wave equations with one and two exponential nonlinearities. When the constant term in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained, while when that term is nonzero, all the basic travelling-wave solutions of Liouville, Tzitzéica, and their variants, as as well sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear physics and dynamical systems are found through a detailed study of the corresponding elliptic equations."
Walter de Gruyter GmbH
2018
Artículo
Mancas, S., Rosu, H. & Pérez-Maldonado, M. (2018). Travelling-Wave Solutions for Wave Equations with Two Exponential Nonlinearities. Zeitschrift für Naturforschung A, 73(10), pp. 883-892. doi:10.1515/zna-2018-0055
FÍSICA
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales