Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2350
Factorization of the Riesz-Feller Fractional Quantum Harmonic Oscillators
Haret Codratian Rosu
Stefan C. Mancas
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1088/1742-6596/1540/1/012005
Factorization
Fractional
Riesz-Feller
Sub-Gaussian
"Using the Riesz-Feller fractional derivative, we apply the factorization algorithm to the fractional quantum harmonic oscillator along the lines previously proposed by Olivar-Romero and Rosas-Ortiz, extending their results. We solve the non-Hermitian fractional eigenvalue problem in the k space by introducing in that space a new class of Hermite 'polynomials' that we call Riesz-Feller Hermite 'polynomials'. Using the inverse Fourier transform in Mathematica, interesting analytic results for the same eigenvalue problem in the x space are also obtained. Additionally, a more general factorization with two different Lévy indices is briefly introduced."
IOP Publishing
2020
Artículo
H C Rosu and S C Mancas 2020 J. Phys.: Conf. Ser. 1540 012005
FÍSICA
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Tamaño Formato  
JPhysConfSer1540(2020)012005.pdf1.24 MBAdobe PDFVisualizar/Abrir