Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2350
Factorization of the Riesz-Feller Fractional Quantum Harmonic Oscillators | |
Haret Codratian Rosu Stefan C. Mancas | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1088/1742-6596/1540/1/012005 | |
Factorization Fractional Riesz-Feller Sub-Gaussian | |
"Using the Riesz-Feller fractional derivative, we apply the factorization algorithm to the fractional quantum harmonic oscillator along the lines previously proposed by Olivar-Romero and Rosas-Ortiz, extending their results. We solve the non-Hermitian fractional eigenvalue problem in the k space by introducing in that space a new class of Hermite 'polynomials' that we call Riesz-Feller Hermite 'polynomials'. Using the inverse Fourier transform in Mathematica, interesting analytic results for the same eigenvalue problem in the x space are also obtained. Additionally, a more general factorization with two different Lévy indices is briefly introduced." | |
IOP Publishing | |
2020 | |
Artículo | |
H C Rosu and S C Mancas 2020 J. Phys.: Conf. Ser. 1540 012005 | |
FÍSICA | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
JPhysConfSer1540(2020)012005.pdf | 1.24 MB | Adobe PDF | Visualizar/Abrir |