Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2590
Quasi-exactly solvable hyperbolic potential and its anti-isospectral counterpart | |
EDGAR CONDORI POZO MARCO ANTONIO REYES SANTOS Haret Codratian Rosu | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1016/j.aop.2021.168743 | |
Quasi-exactly solvable problem Anti-isospectral Polynomial Confluent Heun equation Lie algebra | |
"We solve the eigenvalue spectra for two quasi exactly solvable (QES) Schrödinger problems defined by the potentials V (x; γ ,η) = 4γ 2 cosh4(x) + V1(γ , η) cosh2(x) + η (η − 1) tanh2(x) and U(x; γ , η) = −4γ 2 cos4(x) − V1(γ , η) cos2(x) + η (η − 1) tan2(x), found by the anti-isospectral transformation of the former. We use three methods: a direct polynomial expansion, which shows the relation between the expansion order and the shape of the potential function; direct comparison to the confluent Heun equation (CHE), which has been shown to provide only part of the spectrum in different quantum mechanics problems, and the use of Lie algebras, which has been proven to reveal hidden algebraic structures of this kind of spectral problems" | |
Elsevier | |
2022 | |
Artículo | |
E. Condori-Pozo, M.A. Reyes, H.C. Rosu, Quasi-exactly solvable hyperbolic potential and its anti-isospectral counterpart, Annals of Physics, Volume 437, 2022, 168743, https://doi.org/10.1016/j.aop.2021.168743. | |
FÍSICA | |
Versión revisada | |
submittedVersion - Versión revisada | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
AnnalsPhysics437(2022)168743.pdf | 602.05 kB | Adobe PDF | Visualizar/Abrir |