Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/2590
Quasi-exactly solvable hyperbolic potential and its anti-isospectral counterpart
EDGAR CONDORI POZO
MARCO ANTONIO REYES SANTOS
Haret Codratian Rosu
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.aop.2021.168743
Quasi-exactly solvable problem
Anti-isospectral
Polynomial
Confluent Heun equation
Lie algebra
"We solve the eigenvalue spectra for two quasi exactly solvable (QES) Schrödinger problems defined by the potentials V (x; γ ,η) = 4γ 2 cosh4(x) + V1(γ , η) cosh2(x) + η (η − 1) tanh2(x) and U(x; γ , η) = −4γ 2 cos4(x) − V1(γ , η) cos2(x) + η (η − 1) tan2(x), found by the anti-isospectral transformation of the former. We use three methods: a direct polynomial expansion, which shows the relation between the expansion order and the shape of the potential function; direct comparison to the confluent Heun equation (CHE), which has been shown to provide only part of the spectrum in different quantum mechanics problems, and the use of Lie algebras, which has been proven to reveal hidden algebraic structures of this kind of spectral problems"
Elsevier
2022
Artículo
E. Condori-Pozo, M.A. Reyes, H.C. Rosu, Quasi-exactly solvable hyperbolic potential and its anti-isospectral counterpart, Annals of Physics, Volume 437, 2022, 168743, https://doi.org/10.1016/j.aop.2021.168743.
FÍSICA
Versión revisada
submittedVersion - Versión revisada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Tamaño Formato  
AnnalsPhysics437(2022)168743.pdf602.05 kBAdobe PDFVisualizar/Abrir