Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/899
Integrable equations with Ermakov–Pinney nonlinearities and Chiellini damping | |
HARET CODRATIAN ROSU | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1016/j.amc.2015.02.037 | |
Dissipative Ermakov-Pinney equation Chiellini damping Reid nonlinearities Abel equation | |
"We introduce a special type of dissipative Ermakov-Pinney equations of the form vζζ + g(v)vζ + h(v) = 0, where h(v) = h0(v) + cv−3 and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h0(v) is a linear function, h0(v) = λ2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h0(v) = Ω20(v − v2) and show that it leads to an integrable hyperelliptic case." | |
Elsevier | |
2015 | |
Artículo | |
Inglés | |
Público en general | |
Stefan C. Mancas, Haret C. Rosu, Integrable equations with Ermakov–Pinney nonlinearities and Chiellini damping, Applied Mathematics and Computation, Volume 259, 2015, Pages 1-11, ISSN 0096-3003, http://dx.doi.org/10.1016/j.amc.2015.02.037. | |
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ApplMathComp259(2015)1.pdf | 363.71 kB | Adobe PDF | Visualizar/Abrir |