Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/899
Integrable equations with Ermakov–Pinney nonlinearities and Chiellini damping
HARET CODRATIAN ROSU
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1016/j.amc.2015.02.037
Dissipative Ermakov-Pinney equation
Chiellini damping
Reid nonlinearities
Abel equation
"We introduce a special type of dissipative Ermakov-Pinney equations of the form vζζ + g(v)vζ + h(v) = 0, where h(v) = h0(v) + cv−3 and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h0(v) is a linear function, h0(v) = λ2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h0(v) = Ω20(v − v2) and show that it leads to an integrable hyperelliptic case."
Elsevier
2015
Artículo
Inglés
Público en general
Stefan C. Mancas, Haret C. Rosu, Integrable equations with Ermakov–Pinney nonlinearities and Chiellini damping, Applied Mathematics and Computation, Volume 259, 2015, Pages 1-11, ISSN 0096-3003, http://dx.doi.org/10.1016/j.amc.2015.02.037.
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Descripción Tamaño Formato  
ApplMathComp259(2015)1.pdf363.71 kBAdobe PDFVisualizar/Abrir