Por favor, use este identificador para citar o enlazar este ítem:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/932
Traveling kinks in cubic nonlinear Ginzburg-Landau equations | |
HARET CODRATIAN ROSU OCTAVIO CORNEJO PEREZ PEDRO ARMANDO OJEDA MAY | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1103/PhysRevE.85.037102 | |
Mathematical Physics | |
"Nonlinear cubic Euler-Lagrange equations of motion in the traveling variable are usually derived from Ginzburg-Landau free energy functionals frequently encountered in several fields of physics. Many authors considered in the past damped versions of such equations with the damping term added by hand simulating the friction due to the environment. It is known that even in this damped case kink solutions can exist. By means of a factorization method, we provide analytic formulas for several possible kink solutions of such equations of motion in the undriven and constant field driven cases, including the recently introduced Riccati parameter kinks which were not considered previously in such a context. The latter parameter controls the delay of the switching stage of the kinks. The delay is caused by antikink components that are introduced in the structure of the solution through this parameter." | |
APS Publishing | |
2012 | |
Artículo | |
Inglés | |
Público en general | |
H. C. Rosu, O. Cornejo-Pérez, and P. Ojeda-May Phys. Rev. E 85, 037102 – Published 12 March 2012 | |
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
Versión publicada | |
publishedVersion - Versión publicada | |
Aparece en las colecciones: | Publicaciones Científicas Nanociencias y Materiales |
Cargar archivos:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PhysRevE85(2012)037102.pdf | 309.61 kB | Adobe PDF | Visualizar/Abrir |