Please use this identifier to cite or link to this item:
http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/952
The hyperbolic, the arithmetic and the quantum phase | |
Michel Planat HARET CODRATIAN ROSU | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://doi.org/10.1088/1464-4266/6/9/L01 | |
Mutually unbiased bases MUBs Finite projective planes Hopf fibrations | |
"We develop a new approach of the quantum phase in an Hilbert space of finite dimension which is based on the relation between the physical concept of phase locking and mathematical concepts such as cyclotomy and the Ramanujan sums. As a result, phase variability looks quite similar to its classical counterpart, having peaks at dimensions equal to a power of a prime number. Squeezing of the phase noise is allowed for specific quantum states. The concept of phase entanglement for Kloosterman pairs of phase-locked states is introduced." | |
IOP Publishing | |
2004 | |
Artículo | |
Inglés | |
Público en general | |
Metod Saniga et al 2004 J. Opt. B: Quantum Semiclass. Opt. 6 L19 | |
FÍSICA | |
Versión revisada | |
submittedVersion - Versión revisada | |
Appears in Collections: | Publicaciones Científicas Nanociencias y Materiales |
Upload archives
File | Description | Size | Format | |
---|---|---|---|---|
JOptB6(2004)S583.pdf | 312.33 kB | Adobe PDF | View/Open |