Por favor, use este identificador para citar o enlazar este ítem: http://ipicyt.repositorioinstitucional.mx/jspui/handle/1010/960
Ramanujan sums for signal processing of low-frequency noise
Michel Planat
HARET CODRATIAN ROSU
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://doi.org/10.1103/PhysRevE.66.056128
"An aperiodic (low-frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as Möbius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low-frequency regime. In place we introduce a different signal processing tool based on the Ramanujan sums cq(n) well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasiperiodic versus the time n and aperiodic versus the order q of the resonance. Different results arise from the use of this Ramanujan-Fourier transform in the context of arithmetical and experimental signals."
American Physical Society
2002
Artículo
Inglés
Público en general
Michel Planat, Haret Rosu, and Serge Perrine Phys. Rev. E 66, 056128 (November 2002)
FÍSICA
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Publicaciones Científicas Nanociencias y Materiales

Cargar archivos:


Fichero Descripción Tamaño Formato  
PhysRevE66(2002)056128.pdf219.91 kBAdobe PDFVisualizar/Abrir